跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙秀慧
研究生(外文):Shiou Huei Chao
論文名稱:Aspergillusoryzaeleucineaminopeptidase基因的選殖
論文名稱(外文):Cloning of leucine aminopeptidase gene from Aspergillus oryzae
指導教授:許文輝許文輝引用關係
指導教授(外文):Wen Hwei Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:103
中文關鍵詞:亮胺酸N 端切位酉每
外文關鍵詞:leucine aminopeptidaseAspergillus oryzae
相關次數:
  • 被引用被引用:6
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Aspergillus oryzae是醱酵工業上經常使用的菌種。此種真菌能分泌多種蛋白酉每,以分解環境中的物質,作為營養來源。Leucine aminopeptidase (LAP) 可能也是扮演相同的角色。在市面上已經有來自A. oryzae 的LAP商品,但是目前仍未有lap基因序列及其生理意義的相關文獻被發表。
為取得lap基因片斷做為探針,將市售的Aspergillus sojae蛋白 酉每,經FPLC及RP-HPLC純化出LAP,再分別以endopeptidase Glu-C及lysylendopeptidase處理後,回收純化胜月太。經氨基酸定序分析,將定序所得的氨基酸序列,設計成degenerate primer,以A. oryzae cDNA為模板 (template),利用聚合酉每 鏈鎖反應 (PCR),複製出700 bp的片段。以此片段作為探針 (probe),由A. oryzae染色體基因庫及cDNA基因庫中,分別選殖出lap基因。
A. oryzae lap基因的ORF全長為1,320 bp,帶有3個introns,可轉譯出377個氨基酸(40,506 Da)。轉譯出的氨基酸序列,與V. proteolyticus lap基因具有33 % 的相似性。將A. sojae LAP蛋白之N端氨酸基序列與A. oryzae lap基因比對,顯示在A. oryzae lap基因中,具有由77個氨基酸組成的訊號胜月太 (signal peptide),俾將LAP外泌到胞外。分泌到胞外的LAP,分子量為32,680 Da,與利用SDS-PAGE上所測得的分子量 (35 kDa) 接近。在距ATG -120 ~ -114,有一TATA box,另有CAAT box位於-286 ~ -283。在-88 ~ -69位置,有一個特殊的DNA序列,可能是pH的調控區域。在ORF的3''端,有poly (A) adding site。在ORF內的3個introns,大小分別為59、74及56 bp,距離ATG 155-213、640-713 及1031-1086的位置。除了最靠近轉錄起始點的intron外,其餘兩個introns的結構,皆符合GT-AG的原則。lap基因的Asn-87與Asn-288,可能是會被醣化的位置。
Aspergillus oryzae is widely used in the fermentation industry. This fungus can to secrete many types and high level of proteases to decompose nutrient sources. Leucine aminopeptidase (LAP) may participate in protein degradation. A. oryzae LAP is commercialized, however, its gene structure and physiological role has never been reported.
To obtain a lap gene fragment as probe, LAP was purified from commercial Aspergillus sojae proteases using FPLC and RP-HPLC. The purified LAP was digested with endopeptidase Glu-C or lyslyendopeptidase. Partial LAP fragments were sequenced and back-translated to degenerate primers. A 700bp fragment was amplified by PCR using A. oryzae cDNA as template. The lap genes were then isolated from A. oryzae genomic and cDNA libraries using 700 bp fagment as probe.
A. oryzae lap gene comprises 1,320 bp with 3 introns and encodes a protein consisting of 377 amino acids ( 40,506 Da). The deduced amino acids shows only 33% identity to V. proteolyticus lap. Comparison of the protein sequencing from A. sojae LAP and the deduced amino acid sequence from A. oryzae lap revealed a signal peptide with 77 amino acids in A. oryzae LAP. The mature protein has a calculated molecular mass of 36,280 Da which almost matches the molecular mass of 35 kDa determined from SDS-PAGE. A TATA box was identified at position -120 from the ATG, and a CAAT box was found at position -286. A specific region, -88 to -69, may be related to pH regulation. A poly (A) adding site was found in the 3'' region. Three introns are 59, 74, and 56 bp in size and located at 155-213, 640-713 and 1031-1086, respectively. Except the intron which is the nearest to start codon, others obeys the GT-AG rule. Two putative N-glycosylation sites could be identified in Asn-87 and Asn-288 of A. oryzae lap.
Abstract ---------------------------------------------------------------------1
中文摘要 -------------------------------------------------------------------3
前言 -------------------------------------------------------------------------5
材料與方法
一、藥品 -----------------------------------------------------------------12
二、菌株與質體----------------------------------------------------------12
三、E. coli質體DNA的小量抽取-----------------------------------13
四、DNA的洋菜電泳分析 -------------------------------------------14
五、DNA片段的回收及純化
(1).回收小片段DNA --------------------------------------------------15
(2).回收大片段DNA --------------------------------------------------16
六、DNA及RNA純鑑定及定量分析 -----------------------------16
七、引子的設計 --------------------------------------------------------17
八、聚合酵素鏈鎖反應 -----------------------------------------------18
九、反轉錄聚合酉每鍊鎖反應 -----------------------------------------19
十、DNA黏接反應 ----------------------------------------------------20
十一、質體的轉形作用
(1).勝任細胞的製備 --------------------------------------------------21
(2).轉形作用 -----------------------------------------------------------21
十二、蛋白質電泳分析 -----------------------------------------------22
十三、Leucine aminopeptidase (LAP)活性測定
(1).酵素呈色法 ---------------------------------------------------------24
(2).LAP活性染色-------------------------------------------------------24
十四、DNA探針的取得
(1).LAP的純化 --------------------------------------------------------25
(2).反相高效液相層析法 --------------------------------------------26
(3).以protease切LAP ------------------------------------------------27
(4).液相層析-三重四極質譜儀 -------------------------------------29
(5).蛋白的定序 ---------------------------------------------------------29
十五、Aspergillus oryzae染色體DNA的抽取 -------------------30
十六、A. oryzae RNA的萃取 ----------------------------------------31
十七、mRNA的純化 --------------------------------------------------33
十八、A. oryzae基因庫的建立
(1).染色體基因庫的建立 --------------------------------------------34
(2).cDNA基因庫的建立 --------------------------------------------- (3).基因庫的放大 ------------------------------------------------------3539
(4).含phagemid之噬菌體的大量釋出法 -------------------------40
(5).探針的製備 ---------------------------------------------------------41
(6).溶菌斑雜交法 ------------------------------------------------------42
(7).單一選殖株質體釋法 --------------------------------------------43
(8).含lap基因之DNA片段的限制酉每圖譜 ----------------------45
(9).南方轉漬雜交法 ---------------------------------------------------45
十九、質體pBK-CMV1的次選殖 ----------------------------------46
二十、蛋白含醣量之分析 --------------------------------------------46
二十一、A. oryzae培養液的濃縮 -----------------------------------47
結果
一、lap基因探針的製備 ----------------------------------------------48
(一).根據已知LAP酵素氨基酸序列的保留區 ------------------48
(二).根據Aspergillus sp. LAP酵素的氨基酸序列 --------------48
二、A. oryzae染色體基因庫及cDNA基因庫的構築 -----------52
三、lap基因的篩選 ----------------------------------------------------53
四、含有lap基因之DNA片段之限制酉每圖譜分析 -------------54
五、pBK-CMV1及pSK3的核酸定序 -----------------------------55
六、lap基因的結構 ----------------------------------------------------56
討論 -------------------------------------------------------------------------57
圖表 -------------------------------------------------------------------------63
參考文獻 -------------------------------------------------------------------103
鄭靜桂. 1997. 蛋白質之水解與水解液之利用. 食品工業月刊. 第29卷第05期:10-17.
楊詠翔. 1999. 食品中抗高血壓胜月太 的發展現況. 食品工業月刊. 第31卷第01期:9-18.
Adler-Nissen. 1986. J. Enzymic Hydrolysis of Food Proteins., Elsevier Applied Science Publishers: London.
Agens, D., Broek, P., Affolter, M. and Monod M. 1998. Characterization of the prolyl dipeptidyl peptidase gene (dppIV) from the koji mold Aspergillus oryzae. Applied and environmental microbiology. 64:4809-4815
Almeida, I. C., Neville, D. C. A., Mehlert, A., Treumann, A., Ferguson, M. A. J., Previato, J. O., Travossos, L. R. 1996. Glycobiology. 6:507-515.
Andrews, A. T. and Alichanidis, E. 1990. The plastein reaction revisited:Evidence for a purely aggregation reaction mechanism. Food Chem. 35:243-261.
Becker, D. M., Fikes, J. D., and Guarente, L. 1991. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl. Acad. Sci. USA. 88:1968-197.
Burley SK, David PR, Sweet RM et al. 1992. Structure determination and refinement of bovine lens leucine aminopeptidae and its complex with bestatin. J. Mol. Biol. 224:113-40.
Carpenter FH, Vahl JM. 1973. Leucine aminopeptidase (bovine lens):Mechanism of activation by Mg and Mn of the zinc metalloenzyme, amino acid composition, and sulfhydryl content. J. Biol. Chem. 248:294-304.
Carr, J. W., Lougheed, T. C., and Baker, B. E. 1956. Studies on protein hydrolysis. IV. Futher observation on the taste of enzymic protein hydrolysates. J. Sci. Food Agric. 7:629-637.
Chauthaiwale, V. M., Therwath, A. and Deshpande, V. V. 1992. Bcteriophage lambda as a cloning vector. Microbiol Rev. 56:577-591.
Cheevadhanarak, S., Renno, D. V., Saunders, G. and Holt, G. 1991. Cloning and selective overexpression of an alkaline protease-encoding gene from Aspergillus oryzae. Gene. 108:151-155.
Curr, S. J., Unkles, S. E. and Kinghorn, J. R. 1987. The structure and organization of nuclear gene of filamentous fungi. In:Kinghorn, J. R. (Ed.), Gene structure in eukaryotic microbes. IRL Press, Oxford, pp. 93-139.
Edwards, D., Murray, J. A., and Smith, A. G. 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex areexpressed in Arabidopsis. Plant Physiol. 117:1015-1022.
Forsburg, S. L., and Guarente, L. 1989. Identification and characterization of HAP4:A third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3:1166-1178.
Fujimaki, M., Yamashita, M., Arai, S. and Kato, H. 1970. Agric. Biol. Chem. 34 (3):483-484.
Fujimaki, M. Yamashita, M. Okazawa, Y. and Arai, S. 1968. Diffusable bitter peptides inpeptic hydrolyzate of soybean protein. Agric. Biol. Chem. 32 (6):794-795.
Gemmill, T. R., Trimble, R. B. 1999. Biochim. Biophys. Acta. 1426:227-237.
Gunnarsson, A., Svensson, B., Nilsson, B., Svensson, S. 1984. Eur. J. Biochem. 145:463-468.
Herscovics, A. O., Orlean, P. 1993. FASEB J. 7:540-550.
Hooft van Huijsduijnen, R., Li, X. Y., Black, D., Matthes, H., Benoist, C., and Mathis, D. 1990. Co-evolution from yeast to mouse:cDNA cloning of the two NF-Y (CP-1/CBF) subunits. EMBO J. 9:3119-3127.
Ishibashi, N., Arita, Y., Kanehisa, H., Kouge, K., Okai, H. and Fukui, S. 1987. Bitterness of leucine-containing peptides. Agric. Biol. Chem. 51 (9):2389-2394.
Ishibashi, N., Kouge, K, Shinoda, I., Kanehisa, H. and Okai, H. 1988a. A mechanism for bitter taste sensibility in peptides. Agric. Biol. Chem. 52:819-827.
Ishibashi, N., Kubo, T., Chino, M., Fukui, H., Shinoda, I., Kikuchi, E., Okai, H. and Fukui, S. 1988b. Taste of proline containing peptides. Agric. Biol. Chem. 52 (1):95-98.
Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H. and Fukui S. 1988c. Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem. 52 (1):91-94.
Jarai, C. and Buxton, F. 1994. Nitron, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Current genetics. 26:238-244.
Kingston, RE., Chomczynski, P. and Sacchi, N. 1991. Guanidinium methods for total RNA preparation. In Current Protocols in Molecular Biology. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman (eds). New York: Wiley, Suppl 14, pp 4.2.1-4.2.8.
Kim H, Lipscomb WN. 1993. Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by x-ray crystallography. Proc. Natl. Acad. Sci. USA. 90:5006-10.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacterophage T4. Nature. 227:680-685
Lalasidis, G. and Sjoberg, L. B. 1978. Two new methods of debittering protein hydrolysates and a fraction of hydrosates with exceptionally high content of essential amino acid. J. Agric. Food Chem. 26:742-749.
Lee, Y. S., Noguchi, T. and Naito, H. 1980. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br. J. Nutr. 43:457-467.
Li, Q., Herrler, M., Landsberger, N., Kaludov, N., Ogryzko, V. V., Nakatani, Y., and Wolffe, A. P. 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17:6300-6315.
Littlejohn, T. G., and M. J. Hynes. 1992. Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Mol. Gen. Genet. 235:81-88.
Maras, M., Bryun, A., Schraml, J., Herdewijn, P., Claeyssens, M., Fiers, W., Contreras, R. 1997. Eur. J. Biochem. 245:617-625.
McNabb, D. S., Tseng, K. A., and Guarente, L. 1997. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol. Cell. Biol. 17:7008-7018.
Minamiura, N., Matsumura, Y., Fukumoto, J. and Yamamoto, T. 1972. Bitter peptides in cow milk casein digests with bacterial proteinase. Agric. Biol. Chem. 36 (4):588-595.
Ohta, M., Emi, S., Iwamoto, H., Hirose, J., Hiromi, K., Itoh, H., Shin, T., Murao, S., Mitsuura, F. 1996. Biosci. Biotechnol. Biochem. 60:1123-1130.
Olesen, J. T., Fikes, J. D., and Guarente, L. 1991. The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol. Cell. Biol. 11:611-619.
Oshima, G., Shimabukuro, H. and Nagasawa, K. 1979. Biochim. Biophys. Acta. 566:128-137.
Pautot, Veronique., Holzer, F. M., Reisch, B., and Walling. L. L. 1993. Leucine aminopeptidase:An inducible component of the defense response in Lycopersicon esculentum (tomato). Proc. Natl. Acad. Sci. USA. 90:9906-9910.
Pszczola, D. E. 1998. The ABCs of nutraceutical ingredients. Food Technol. 52 (3):30-37.
Raeder, U. and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology. 1:17-20
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science. 239:487-491
Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning:laboratory manual, second edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Stevenson, D. E., Ofman, D. J., Morgan, K. R. and Stanley R. A. 1998. Pretease-catalyzed condensation of peptides as a potential means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates. Enzyme and Microbial Technology. 22:100-110.
Strater N, Lipscomb WN. 1995. Transition state analogue L-leucine-phosphonic anid bound to bovine lens leucine aminopeptidase: X-ray structure at 1.65 A resolution ina new crystal form. Biochemistry. 34:9200-10.
Tadanobu, N., Seiichi, N. and Nobuyoshi, I. 1973. Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agr. Biol. Chem. 37(4):757-765.
Tadanobu, N., Seiichi, N. and Nobuyoshi, I. 1973. Purification and properties of leucine aminopeptidase II from Aspergillus oryzae. Agr. Biol. Chem. 37(4):767-774.
Tadanobu, N., Seiichi, N. and Nobuyoshi, I. 1973. Purification and properties of leucine aminopeptidase III from Aspergillus oryzae. Agr. Biol. Chem. 37(4):775-782.
Takayanagi, T., Kimura, A., Chiba, S., Aijisaka, K. 1994. Carbohydr. Res. 256:149-158.
Taylor A, Peltier CZ, Jahngen EGE Jr et al. 1992. Use of azidobestatin as a photoaffinity label to identify the active site peptide of leucine aminopeptidase. Biochemistry. 31:4141-50.
Taylor A. 1993a. Aminopeptidases:toward a mechanism of action. TIBS. 18:167-172.
Taylor A. 1993b. Aminopeptidases:structure and function. FASEB J. 7:290-298.
Taylor A. 1996. Molecular Biology Intelligence Unit:Aminopeptidase. R.G. Landes Company. Austin, Texas, USA.
Van Heeswijck, R., and M. J. Hynes. 1991. The amdR product and a CCAAT-binding factor bind to adjacent , possibly overlapping DNA sequences in the promotor region of the Aspergillus nidulans amdS gene. Nucleic Acids Res. 19:2655-2660.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top