跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志龍
研究生(外文):Zhi-Long Chen
論文名稱:多層核殼型聚苯胺/二氧化矽包覆鐵氧化物奈米複材之製備及其電性與磁性之研究
論文名稱(外文):Preparation and Electromagnetic Properties of Multilayered Core-Shell Structure of Polyaniline/Silica-Coated Iron Oxide Nanoparticles
指導教授:謝達華謝達華引用關係
指導教授(外文):Tar-Hwa Hsieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:多層核殼型聚苯胺/二氧化矽包覆鐵氧化物奈米複材化學共沉澱法磁赤鐵礦超順磁特性導電性
外文關鍵詞:Stöber processmultilayered core-shell PANI/SiO2/γ-Fe2O3 nanocompositessuperparamagnetic behaviorconductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是以Stöber 法,先將二氧化矽包覆鐵氧化物以製備核殼結構之二氧化矽/鐵氧化物(SiO2/γ-Fe2O3)奈米複材,再以苯胺為單體利用原位聚合反應,合成具電磁特性之多層核殼型聚苯胺/二氧化矽包覆鐵氧化物(PANI/SiO2/γ-Fe2O3)奈米複材,同時藉由傅氏紅外線光譜儀、紫外光/可見光吸收光譜儀、廣角X-光繞射儀、穿透式電子顯微鏡、X-光電子光譜儀、阻抗分析儀、兩點式微歐姆計與超導量子干涉磁量儀等,系統化探討組成、結構與形態對核殼型SiO2/γ-Fe2O3 及多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材導電與磁學特性之影響及其相互間關係。 結果顯示,利用化學共沉澱法可合成具奈米尺寸的磁赤鐵礦(γ-Fe2O3),當γ-Fe2O3/四乙基矽氧烷(TEOS)重量比小於0.55時,可製備以γ-Fe2O3 為核,二氧化矽為殼之核殼型SiO2/γ-Fe2O3 奈米複材,其二氧化矽殼層厚度隨TEOS 添加量的增加而增加;PANI/SiO2/γ-Fe2O3 奈米複材之PANI包覆層則隨二氧化矽殼層厚度的增加而呈局部包覆形態。 磁量儀結果顯示,γ-Fe2O3、核殼型SiO2/γ-Fe2O3 及多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材均具超順磁特性。 核殼型SiO2/γ-Fe2O3 奈米複材之導磁係數與飽和磁化量隨TEOS 添加量的增加而降低;多層核殼型PANI/SiO2 /γ-Fe2O3 奈米複材則隨二氧化矽殼層厚度的增加而降低。 於不同二氧化矽殼層厚度(10~55 nm)下,多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材之摻雜程度隨二氧化矽殼層厚度的增加而降低,導致複材之導電度因而下降;當SiO2/γ-Fe2O3 奈米複材添加量從0.3 g 減少至0.1 g 時,多層核殼型複材之導電度將提昇至10-1 S/cm。
The purpose of this article is to carry out studies on synthesis and characterization of the multilayered polyaniline/silica-coated iron oxide nanocomposites. Two synthesis steps are involved in this work, first is about the preparation of core-shell silica-coated iron oxide nanoparticles. The core-shell structured nanoparticles can be prepared through the well known Stöber process. Second is concerning about the synthesis of multilayered core-shell structure of polyaniline/silica-coated iron oxide nanocomposites by in-situ polymerizing polyaniline on the surface of core-shell structured nanoparticles. As a result, a novel material comprising both leads magnetic and electric conductivity can be obtained. The structure, morphology and properties of samples are characterized by Fourier transform spectrometer (FT-IR), Ultraviolet-Visible spectroscopy (UV-Vis), wide angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), microhmeter, and superconductor quantum interference device (SQUID). The results showed that, as the weight ratio of γ-Fe2O3/TEOS is less than 0.55, the silica-coated maghemite (SiO2/γ-Fe2O3) particles with well-defined a core-shell structure can be conveniently prepared. Furthermore, the thickness of silica coating on the surface of γ-Fe2O3 nanoparticles increases gradually with increasing the TEOS content. For the room-temperature SQUID analysis, the magnetic properties of SiO2/γ-Fe2O3 nanocomposites are mainly dominated by γ-Fe2O3, and all SiO2/γ-Fe2O3 nanocomposites show superparamagnetic behavior. In addition, the saturation magnetization of the synthesized SiO2/γ-Fe2O3 nanocomposites decreases dramatically upon the increase of silica layer thickness. The magnetic properties and superparamagnetic behavior of multilayered core-shell PANI/SiO2/γ-Fe2O3 nanocomposites are found to be the same as the described above. As for microhmeter measurements, revealing the conductivity of nanocomposites increase with increasing the thickness of silica layer. As the amount of SiO2/γ-Fe2O3 nanocomposites is decreased, the doping level and the conductivity of multilayered core-shell PANI/SiO2/γ-Fe2O3 nanocomposites are significantly increased.
中文摘要……………………………………………………І
英文摘要……………………………………………………И
致謝…………………………………………………………Ш
目錄…………………………………………………………IV
表目錄.....................................Ⅵ
圖目錄.....................................Ⅶ
第一章 緒論....................................................1
1-1前言.......................................................1
1-2研究動機....................................................2
第二章 文獻回顧.................................................3
2-1 導電高分子...................................................3
2-1-1 聚苯胺簡介..............................................................6
2-1-2 聚苯胺之合成機構..............................................................8
2-1-3 聚苯胺之摻雜.............................................................11
2-1-4 聚苯胺的導電機構.............................................................13
2-2 鐵氧體.............................................................14
2-2-1 軟磁材料.............................................................15
2-2-2 磁赤鐵礦.............................................................15
2-2-3 磁學簡介.............................................................17
2-2-3-1 磁滯曲線.............................................................17
2-2-3-2 磁性與粒徑的關係.............................................................19
2-2-3-3 磁性與溫度的關係.............................................................21
2-3奈米粒子的化學特性.............................................................25
2-3-1奈米粒子表面被覆.............................................................25
2-3-1-1 溶膠-凝膠法.............................................................27
2-3-2 核殼型奈米粒子.............................................................28
第三章 實驗程序.............................................................30
3-1 實驗材料與藥品.............................................................30
3-2 儀器設備..............................................................32
3-3 實驗步驟..............................................................35
3-3-1 奈米級γ-Fe2O3之合成..............................................................35
3-3-2 核殼型SiO2/γ-Fe2O3 之製備..............................................................37

3-3-3 核殼型PANI/SiO2/γ-Fe2O3奈米複材之製備..........................38
3-4 性質測定.................................................................39
3-5 樣品代號之說明.................................................................44
第四章 結果與討論.................................................................45
4-1 奈米級γ-Fe2O3.............................................................45
4-1-1 合成γ-Fe2O3結構之鑑定............................................................45
4-1-2 合成γ-Fe2O3之磁性質................................................................51
4-2 核殼型SiO2/γ-Fe2O3奈米複材................................................................57
4-2-1不同TEOS添加量的核殼型SiO2/γ-Fe2O3奈米複材結構之鑑定................................................................57
4-2-2 不同TEOS添加量的核殼型SiO2/γ-Fe2O3 奈米複材之磁學特性................................................................65
4-3 多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材................................................................72
4-3-1不同二氧化矽殼層厚度的多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材結構之鑑定................................................................72
4-3-2不同二氧化矽殼層厚度下多層核殼型PANI/SiO2/γ-Fe2O3 奈米複材之磁學特性................................................................88
第五章 結論................................................................94
第六章 參考文獻................................................................95
1.E. J. Mele, and M. J. Rice, “Semiconductor-metal transition in doped polyacetylene”, Phys. Rev. B, 23 (1981) 5397.
2.A. J. Epstein, and A. G. Macdiarmid, “Polyanilines: From Solitons to Polyer Metal, From Chemical Curiosity to Technology”, Synthetic Metals, 69 (1991) 179.
3.H. T. Lee, K. R. Chuang, S. A. Chen, P. K. Wei, J. H. Hsu, W. Fann, “Conductivity Relaxation of 1-Methyl-2-pyrrolidone-Plasticized Polyaniline Film”, Macromolecules, 28 (1995) 7645.
4.A. B. Kaiser, C. K. Subramaniam, P. W. Gilberd and B. Wessling, “Electronic transport properties of conducting polymers and polymer blends”, Synthetic Metals, 69 (1995) 197.
5.F. Lux, “Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings”, Polym. Rev., 35 (1994) 2915.
6.塑膠資訊,8 (1996) 2.
7.王宗雄,導電高分子聚苯胺之簡介及其應用,工業材料雜誌,(2001).
8.A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers”, Synthetic Metals, 125 (2002) 11.
9.K. S. Ho, “Effect of phenolic based polymeric secondary dopants on polyaniline”, Synthetic Metals, 126 (2002) 151.
10.E. Marie, R. Rothe, M. Antonietti, and K. Landfester, “Synthesis of Polyaniline Particles via Inverse and Direct Miniemulsion”, Macromolecules, 36 (2003) 3967.
11.S. Maeda, D. B. Cairns, and S. P. Armes, “New reactive polyelectrolyte stabilizers for polyaniline colloids”, Eur. Polym. J., 33 (1997) 245.
12.E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon, and S. Holdcroft, “Electrochemical oxygen reduction at composite films of Nafion@, polyaniline and Pt”, Electrochimica Acta 44 (1999) 2559.
13.S. Koula, R. Chandrab, S. K. Dhawana, “Conducting polyaniline composite for ESD and EMI at 101 GHz”, Polymer. 41 (2000) 9305.
14.G. Harsanyi, “Polymer Films in sensor Applications”, Technomic Publishing Co., Inc., 3 (1995) 209.
15.H. Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 15 (1862) 161.
16.J. Fritzsche, J. Prakt. Chem., 20 (1904) 453.
17.A. G. Green, and A. E. Woodhead, “Aniline black and allied compounds”, J. Chem. Soc. Trans., 97 (1910) 2388.
18.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, W. Wu, and S. I. Yaniger, “ "Polyaniline": Interconversion of metallic and insulated forms”, Mol. Cryst. Liq. Cryst., 121 (1985) 173.
19.D. M. Mohilner, R. N. Adams, and W. J. Argersinger, “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum”, J. Am. Chem. Soc., 84 (1962) 3618.
20.W. W. Focke, G. E. Wnek, and Y. J. Wei, “Influence of Oxidation State, pH and Counterion on the Conductivity of Polyaniline”, J. Phys. Chem., 91 (1987) 5813.
21.Y. Cao, P. Smith, and A. J. Hegger, “Processable conducting polyaniline”, Synthetic Metals, 57(1993) 3514.
22.E. M. Genies, A. A. Syed, and C. Jsintavis, “Electrochemical Study of Polyaniline in Aqueous and Organic Medium, Redox and Kinetic Properties”, Mol. Cryst. Liq. Cryst., 121 (1985) 181.
23.E. M. Genies, and C. Tsintaris, “Redox mechanism and electrochemical behaviour of polyaniline deposits”, J. Electroanal. Chem., 195 (1985) 109.
24.G. Klärner, M. Müller, F. Morgenroth, M. Wehmeier, T. Soczka-Guth and K. Müllen, “Conjugated oligomers and polymers —new routes, new structures”, Synthetic Metals, 84 (1997) 297.
25.U. A. Sevil, O. Güven, Ö. Birer, and S. Süzer, “Doping of 2-Cl-PANI/PVC films by exposure to UV, γ-rays and e-beams”, Synthetic Metals, 110 (2000) 175.
26.徐靜眉,“水溶性 N-取代丙烯酸聚苯胺之結構與物性研究”,中原大學,碩士論文 (2001).
27.N. V. Bhat, and D. T. Seshadri, “Simultaneous polymerization and crystallization of aniline”, Synthetic Metals, 130 (2002) 185.
28.W. Yin, and R. Eli, “Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid”, Synthetic Metals, 108 (2000) 39.
29.吳家昇,“聚苯胺插層奈米黏土機構之研究”,高雄應用科技大學,碩士論文 (2004).
30.F. Wu, X. Liu, M. Cao, W. Wei, and H. Wu, Journal of Xi'an Jiaotong University, 34 (2000) 33.
31.C. W. Lee, Kim, B. Young, and S. H. Lee, “Synthesis and Properties of Tailor-Made Supramolecular Photo Acid Generators for Conducting Patterns of Polyaniline”, Chemistry of Materials, 17 (2005) 366.
32.V. A. Adrian, J. A. Sordo, and G. E. Scuseria, “Doping of Polyaniline by Acid-Base Chemistry: Density Functional Calculations with Periodic Boundary Conditions”, J. Am. Chem. Soc., 127 (2005), 11318.
33.L. M. Huang, C. H. Chen, T. C. Wen, and A. Gopalan, “Effect of secondary dopants on electrochemical and spectroelectrochemical properties of polyaniline”, Electrochimica Acta, 51 (2006) 2756.
34.P. P. Sengupta, and B. AdhiKari, “Influence of polymerization condition on the electrical conductivity and gas sensing properties of polyaniline”, Materials Science and Engineering A, 459 (2007) 278.
35.M. Ghosh, A. K. Meikap, S. K. Ghattopadhyay, and S. Chatterjee, “Low temperature transport properties of Cl-doped conducting polyaniline”, Journal of Physics and Chemistry of Solids, 62 (2001) 475.
36.A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials”, Synthetic Metals, 125 (2002) 23.
37.蔡明哲,“不同摻雜酸結構對聚苯胺介電行為及電磁波遮蔽效應之研究”,高雄應用科技大學,碩士論文 (2004).
38.V. N. Prigodin, and A. J. Epstein, “Nature of insulator–metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers”, Synthetic Metals, 125 (2002) 43.
39.林世仁,“導電性聚摻合物之研究”,高雄應用科技大學,碩士論文 (2004).
40.黃郁嵐,“聚苯胺改質奈米碳管及其奈米複合材料製備”,高雄應用科技大學,碩士論文 (2006).
41. 鄭振東,實用磁性材料,金華科技圖書,(1999).
42.R. Zboril, M. Mashlan, and D. Petridis, “Iron(III) Oxides from Thermal Processes-Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications”, Chem. Mater., 14 (2002) 969.
43.黃慶弘,“聚苯胺/磁赤鐵礦奈米複材之製備及其電磁特性之研究”,高雄應用科技大學,碩士論文 (2005).
44.G. E. Fish, “Soft magnetic materials”, Proceedings of the IEEE, 78 (1990) 947.
45.A. R. Eichmann, D. C Jiles, and M. K. Devine, “In situ determination of the magnetic properties of soft magnetic materials using an automated magnetic measuring system”, J. Magn. Magn. Mater., 104 (1992) 375.
46.G. Ye, G. Oprea, T. Troczynski, “Synthesis of MgAl2O4 Spinel Powder by Combination of Sol–Gel and Precipitation Processes”, Journal of the American Ceramic Society, 88 (2005) 3241.
47.M. Jarlbring, L. Gunneriusson, B. Hussmann, W. forsling, “Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions”, J. Colloid Interface Sci., 285 (2005) 212.
48.B. H. Sohn, R. E. Cohen, and G. C. Papaefthymiou, “Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers”, J. Magn. Magn. Mater., 182 (1998) 216.
49.R. H. Kodama and A. E. Berkowitz, “Atomic-scale magnetic modeling of oxide nanoparticles”, Phys. Rev. B, 59 (1999) 6321.
50.S. Djendli, H. Sahsah, D. Jamon, F. Donatini, and J. Monin, “Adjusted quarter wave plate using γ-Fe2O3 ferrofluid”, J. Magn. Magn. Mater., 217 (2000) 170.
51.C. V. Gopal Reddy, K. Kalyana Seela, and S. V. Manorama, “Preparation of γ-Fe2O3 by the hydrazine method: Application as an alcohol sensor”, International Journal of Inorganic Materials, 2 (2000) 301.
52.I. Šafarík, and M. Šafaríková, “One-step partial purification of Solanum tuberosum tuber lectin using magnetic chitosan particles” Biotechnol. lett., 22 (2000) 941.
53.G. R. Pedro, “Hybrid Organic-Inorganic Materials-In Search of Synergic Activity”, Adv. Mater., 13 (2001) 163.
54.進角聰信(Soshin Chikazumi)著,張煦、李學養合譯,磁性物理學,聯經出版社,(1982).
55. 楊國輝、廖淑慧,應用電磁學,五南圖書,(2000).
56.山口橋、柳田博明、岡本祥一、近桂ㄧ郎,磁性陶瓷,復漢出版社,(2001).
57.金重勳,磁性技術手冊,Chinese Association for magnetic Technology, (2002).
58.M. D. Mukadam, S. M. Yusuf, P. Sharma, and S. K. Kulshreshtha, “Magnetic behavior of field induced spin-clusters in amorphous Fe2O3”, J. Magn. Magn. Mater. 269 (2004) 317.
59.S. J. Lee, J. R. Jeong, S. C. Shin, J. C. Kim, and J. D. Kim, “Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique”, J. Magn. Magn. Mater. 282 (2004) 147.
60.K. Woo, J. Hong, S. Choi, H. W. Lee, J. P. Ahn, C. S. Kim, and S. W. Lee, “Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles”, Chem. Mater., 16 (2004) 2814.
61.J. R. Jeong, S. J. Lee, J. D. Kim, and S. C. Shin, “Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method”, physica status solidi (b). 241 (2004) 1593.
62.C. R. Lin, Y. M. Chu, and S. C. Wang, “Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction”, Materials Letters. 60 (2006) 447.
63.D. L. Leslie-Pelecky, and R. D. Rieke, “Magnetic Properties of Nanostructured Materials”, Chem. Mater., 8 (1996) 1770.
64.L. Zhang, G. C. Papaefthymiou, and J. Y. Ying, “Size quantization and interfacial effects on a novel γ-Fe2O3/SiO2 magnetic nanocomposite via sol-gel matrix-mediated synthesis”, J. of Appl. Phys., 81 (1997) 6892.
65.Y. Kobayashi, D. Kawashima, and A. Tomita, “Preparation of a γ-Alumina Film Doped with Fine γ-Iron(III) Oxide Particles”, Chem. Mater., 9 (1997) 1887.
66.F. del Monte, M. P. Morales, D. Levy, A. Fernandez, M. Ocana, A. Roig, E. Molins, K. O’Grady, and C. J. Serna, “Formation of γ-Fe2O3 Isolated Nanoparticles in a Silica Matrix”, Langmuir. 13 (1997) 3627.
67.M. Kryszewski, J. K. Jeszka, “Nanostructured conducting polymer composites - superparamagnetic particles in conducting polymers”, Synthetic Metals. 94 (1998) 99.
68.溫明鏡,“氧化鐵磁性奈米粒子之合成與特性研究”,中正大學,碩士論文,(2003).
69.林彥宏,“Fe3O4-SiO2 奈米核-殼結構粒子的製備與磁性研究”,東海大學,碩士論文,(2003)
70.鄭璟軒,“磁性奈米微粒之二氧化矽被覆技術之研究”,成功大學,碩士論文,(2003)
71.D. M. Roy, and R. Roy, “An Experimental Study of the Formation and Properties of Synthetic Serpentines and Related Layer Silicate Minerals”, Am. Mineral., 39 (1954) 957.
72.H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie.,10 (1971) 362.
73.W. Stöber, A. Fink, E. Bohn, “Cotmlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Interface Sci., 26 (1968) 62.
74.周力行、林有銘,“Synthesis and Applications of Nanopowders”, 工業材料雜誌 ,237 (2006) 73.
75.M. Sauer, D. Streich, and W. Meier, “pH-Sensitive Nanocontainers”, Adv. Mater., 13 (2001) 1649.
76.R. Haag, “Supramolecular Drug-Delivery Systems Based on Polymeric Core-Shell Architectures”, Angew. Chem., Int. Ed., 43 (2004) 278.
77.Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, and Y. Li, “Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure”, Angew. Chem., Int. Ed., 44 (2005) 5083.
78.K. S. Soppimath, D. C. W. Tan, and Y. Y. Yang, “pH-Triggered Thermally Responsive Polymer Core-Shell Nanoparticles for Drug Delivery”, Adv. Mater., 17 (2005) 318.
79.U. Jeong, Y. Wang, M. Ibisate, and Y. Xia, “Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres”, Adv. Funct. Mater., 15 (2005) 1907.
80.M. Oh, and C. A. Mirkin, “Chemically tailorable colloidal particles from infinite coordination polymers”, Nature, 438 (2005) 651.
81.F. del Monte, M. P. Morales, D. Levy, A. Fernandez, M. Ocan, A. Roig, E. Molins, K. O’Grady, and C. J. Serna, “Formation of γ-Fe2O3 Isolated Nanoparticles in a Silica Matrix”, Langmuir. 13 (1997) 3627.
82.E. M. Moreno, M. Zayat, M. P. Morales, C. J. Serna, A. Roig, and D. Levy, “Preparation of Narrow Size Distribution Superparamagnetic γ-Fe2O3 Nanoparticles in a Sol-Gel Transparent SiO2 Matrix”, Langmuir. 18 (2002) 4972.
83.S. H. Im, T. Herricks, Y. T. Lee, Y. Xia, “Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles”, Chemical Physics Letters. 401 (2005) 19.
84.Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, S. K. Fu, “Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 262 (2005) 87.
85.V. Salgueiriño-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marzán, and M. Farle, “Composite Silica Spheres with Magnetic and Luminescent Functionalities”, Adv. Funct. Mater., 16 (2006) 509.
86.L. G. B. Bremer, M. W. C. G. Verbong, M. A. M Webers, M. A. M. M. van Doorn, “Preparation of core-shell dispersions with a low tg polymer core and a polyaniline shell”, Synthetic Metals, 84 (1997) 355.
87.Jianguo Deng, Xiaobing Ding, Wenchuan Zhang, Yuxing Peng, Jianhua Wang, Xingping Long, Pei Li and Albert S. C. Chan, “Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure”, Polymer, 43 (2002) 2179.
88.Z. Niu, Z. Yang, Z. Hu, Y. Lu, C. Han, “Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres”, Adv. Funct. Mater., 13 (2003) 949.
89.Z. F. Li, M. T. Swihart, and E. Ruckenstein, “Luminescent Silicon Nanoparticles Capped by Conductive Polyaniline through the Self-Assembly Method”, Langmuir 20 (2004) 1963.
90.K. Luo, X. Guo, N. Shi, C. Sun, “Synthesis and characterization of core–shell nanocomposites of polyaniline and carbon black”, Synthetic Metals, 151 (2005) 293.
91.J. Jang, J. Ha, and B. Lim, “Synthesis and characterization of monodisperse silica–polyaniline core–shell nanoparticles”, Chem. Commun., (2006) 1622.
92.M. Wan, and W. Zhou, J. Li, “Composite of polyaniline containing iron oxides with nanometer size”, Synthetic Metals, 78 (1996) 27.
93.M. Kryszewski, J. K. Jeszka, “Nanostructured conducting polymer composites — superparamagnetic particles in conducting polymers”, Synthetic Metals, 94 (1998) 99.
94.M. Wan, and J. Li, “Synthesis and electrical-magnetic properties of polyaniline composites”, Polymer Chemistry. 36 (1998) 2799.
95.B. Z. Tang, Y. Geng, J. W. Yip Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov, and X. X. Zhang, “Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films”, Chemical Materials. 11 (1999) 1581.
96.Q. L. Yang, J. Zhai, L. Feng, Y. L. Song, M. X. Wang, L. Jiang, W. G. Xu, Q. S. Li, “Synthesis and Characterization of Conducting Polyaniline/γ-Fe2O3 Magnetic Nanocomposite”, Synthetic Metals, 135-136 (2003) 819.
97.J. Deng, C. L. He, Y. Peng, J. Wang, X. Long, and A. S. C. Chan, “Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure”, Synthetic Metals, 139 (2003) 295.
98.G. Li, S. Yan, E. Zhou, and Y. Chen, “Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276 (2006) 40.
99.K. H. Wu, Y. M. Shin, C. C. Yang, W. D. Ho, J. S. Hsu, “Preparation and ferromagnetic properties of Ni0.5Zn0.5Fe2O4/polyaniline core-shell nanocomposites”, Polymer Chemistry, 44 (2006) 2657.
100.T. H. Hsieh, K. S. Ho, C. H. Huang, Y. Z. Wang, Z. L. Chen, “Electromagnetic properties of polyaniline/maghemite nanocomposites I. The effect of re-doping time on the electromagnetic properties”, Synthetic Metals, 156 (2006) 1355.
101.J. Jiang, L. Li, F. Xu, “Polyaniline–LiNi ferrite core–shell composite:Preparation, characterization and properties”, Materials Science and Engineering A, 456 (2007) 300.
102.Z. Zhang, Z. Wei, and M. Wan, “Nanostructures of Polyaniline Doped with Inorganic Acids”, Macromolecules, 35 (2003) 5937.
103. W. Yin, and E. Ruckenstein, “Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid”, Synthetic Metals, 108 (2000) 39.
104.S. Chakrabarti, D. Ganguli, S. Chaudhuri, “Optical properties of -Fe2O3 nanoparticles dispersed on sol–gel silica spheres”, Physica E., 24 (2004) 333.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top