|
[1] National Renewable Energy Laboratory (NREL), (Internet resource), http://www.nrel.gov/. [2] M.A. Green, “Photovoltaics: technology overview”, Energy Policy, Vol. 28, pp. 989-998, 2000. [3] U. Rau and H. W. Schock, lnstitut fur Physikalische Elektronik (IPE), Universitat Stuttgart, Germany [4]Shigeru Niki, Miguel Contreras, Ingrid Repins, Michael Powalla, Katsumi Kushiya, Shogo Ishizuka and Koji Matsubara, “CIGS absorbers and processes”, Prog. Photovoltaic: Res. Appl., Vol. 18, pp. 453–466, 2010. [5] M. Kaelin, D. Rudmann, A. N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, Vol. 77, pp. 749-756, 2004. [6] Wei Li, Yun Sun, Wei Liu, Lin Zhou, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor”, Solar Energy, Vol. 80, pp. 191–195, 2006. [7] Jen-Chuan Chang, Chia-Chih Chuang, Jhe-Wei Guo, Shu Chun Hsu, Hung-Ru Hsu, Chung-Shin Wu , and Tung-Po Hsieh, “An Investigation of CuInGaSe2 Thin Film Solar Cells by Using CuInGa Precursor ”, Nanoscience and Nanotechnology Letters, Vol. 3,pp. 200–203, 2011. [8] Min Sik Kim, R. B. V. Chalapathy, Kyung Hoon Yoon, and Byung Tae Ahn, “Grain Growth Enhancement and Ga Distribution of Cu(In 0.7 Ga 0.3)Se2 Film Using Cu2Se Layer on Cu–In–Ga Metal Precursor”, Journal of The Electrochemical Society, Vol. 157, pp. 154-158, 2010. [9] M Archer, R Hill, “Clean Electricity from Photovoltaics”, Series on Photo conversion of Solar Energy, Vol 1, Published by Imperial Collage Press, London, 2001. [10] BJ Stanberry, A Davydov, CH Chang, TJ Anderson, (Internet resource), http://anderson.ch.ufl.edu/Publication/AIF%20vol394%20p579%20(1996).pdf [11] BJ Stanberry, CH Chang, TJ Anderson, Invited paper presented at the 11th International Conference on Ternary snd Multinary Compounds (ICTM-11), Salford, UK, 12 September, 1997. [12] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett., Vol. 72, pp. 3199-3201, 1998. [13] M. Gloeckler, and J. R. Sites, “Efficiency limitations for wide-band-gap chalcopyrite solar cells”, Thin Solid Films, Vol. 480-481, pp. 241-245, 2005. [14] JE Jaffe, A Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors”, Physical Review B, Vol. 29, pp. 1882-1905, 1984. [15] H. Neumann, “Optical properties and electronic band structure of CuInSe2”, Solar Cells, Vol. 16, pp. 317-333, 1986. [16] M. Igalson, and H. W. Schock, “The metastable changes of the trap spectra of CuInSe2‐based photovoltaic devices”, J. Appl. Phys., Vol. 80, pp. 5765-5769, 1996. [17] M. Schmitt, U. Rau, and J. Parisi,’’ Investigation of deep trap levels in CuInSe2 solar cells by temperature dependent admittance measurements.’’, Proc. 13th European Photovoltaic Solar Energy Conf., Nice, pp. 1969, 1995. [18] T. Walter, R. Herberholz, C. Muller, and H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions”, J. Appl. Phys., vol. 80, pp. 4411-4420, 1996. [19] S. M. Wasim, “Transport properties of CuInSe2”, Solar Cells, Vol. 16, pp. 289-316, 1986. [20] S. B. Zhang, S. H. Wei, and A. Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconductor”, Phys. Rev. B, Vol. 57, pp. 9642-9656, 1998. [21] J. Klais, H. J. Moller, and D. Cahen, “Calculation and experimental characterization of the defect physics in CuInSe2”, Thin Solid Films, Vol. 361-362, pp. 446-449, 2000. [22] B. M. Basol, V. K. Kapur, C. R. Leidholm, and A. Halani, “Flexible and light weight copper indium diselenide solar cell”, Proc. 25th IEEE PVSC, pp. 157-162, 1996. [23] M. Hartmann, M. Schmidt, A. Jasenek, and H. W. Schock, “Flexible and light weight substrates for Cu(In, Ga)Se2 solar cells and modules”, Proc. 28th IEEE PVSC, pp. 638-641, 2000. [24] T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, “Characterization of the Cu(In, Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, vol. 387, pp. 118-122, 2001. [25] Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Prog. Photovoltaic: Res. Appl., Vol. 19, pp. 894–897, 2011. [26] John R. Tuttle, M.A. Contreras, J.S. Ward, AL. Tennant, K.R. Ramanathan, J. Keane, and R. Noufi, “Thin-film Cu(In,Ga)Se2 materials and devices: A versatile material for flat-plate and concentrator photovoltaic applications”, SPIE, Vol. 2531, 2001. [27] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, “Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells”, Progress in Photovoltaics: Research and Applications, Vol. 12, pp. 93–111, 2004. [28] F. S. Hasoon, Y. Yan, H. Althani, K. M. Jones, H. R. Moutinho, J. Alleman, M. M. Al-Jassim, and R. Noufi, “Microstructural properties of Cu(In, Ga)Se2 thin films used in high-efficiency devices”, Thin Solid Films, Vol. 387, pp. 1-5, 2001. [29] T. J. Gillespie, B. R. Lanning, C. H. Marshall, and M. Contreras, “Large-area copper indium diselenide (CIS) process, control and manufacturing”, Proc. 26th IEEE PVSC, pp. 403-406, 1997. [30] V. K. Kapur, B. M. Basol, and E. S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, Vol. 21, pp. 65-72, 1987. [31] P. Besomi, R. B. Wilson, W. R. Wagner, and R. J. Nelson, “Enhanced indium phosphide substrate protection for liquid phase epitaxy growth of indium‐gallium‐arsenide‐phosphide double heterostructure lasers“, J. Appl. Phys., Vol. 54, pp. 535-539, 1983. [32] [33] V. Probst, F. Karg, J. Rimmasch, W. Riedl, W. Stetter, H. Harms and O. Eibl, “Advanced stacked elemental layer progress for Cu(InGa)Se2 thin film photovoltaic devices“, Mat. Res. Soc. Syrup. Proc., Vol. 426, p. 165, 1996. [34] V. Alberts, S. Zweigart, and H. W. Schock, “Preparation of device quality CuInSe2 by selenization of Se-containing precursors in H2Se atmosphere”, Semicond. Sci. Technol., Vol. 12, pp. 217-223, 1997. [35] T. Nakada, and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films”, Appl. Phys. Lett., Vol. 74, pp. 2444-2446, 1999. [36] Westwood W, “Reactive Sputter Deposition”, in Rossnagel S, Cuomo J, Westwood W, Eds, Handbook of Plasma Processing Technology, Chap. 9, Noyes Pub., Park Ridge, NJ ,(1990). [37] R. Herberholz, V. Nadenau, U. Ruhle, C. Koble, H. W. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules”, Sol. Energy Mater. Sol. Cells, Vol. 49, pp. 227-237, 1997. [38] G. Hanna, A. Jasenek, U. Rau, and H. W. Schock, “Open circuit voltage limitations in CuIn1-xGaxSe2 thin-film solar cells – dependence on alloy composition”, Phys. Stat. Sol. (a), Vol. 179, pp. R7-R8, 2000. [39] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, and H. W. Schock, “ZnO/CdS/Cu(In, Ga)Se2 thin film solar cells with improved performance”, Proc. 23th IEEE PVSC, pp. 364-371, 1993. [40] D. W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. J. Tielsch, and J. E. Fulghum, “Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy”, J. Vac. Sci. Technol. A., Vol. 15, pp. 3044-3049, 1997. [41] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2”, J. Appl. Phys., Vol. 85, pp. 7214-7218, 1999. [42] D. Hariskos, M. Ruckh, U. Ruhle, T. Walter, H. W. Schock, J. Hedstrom, and L. Stolt, “A novel cadmium free buffer layer for Cu(In, Ga)Se2 based solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 41-42, pp. 345-353, 1996. [43] M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, “On the role of Na and modifications to Cu(In, Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers”, Proc. 26th IEEE PVSC, pp. 359-362, 1997. [43] M.A. Contreras, B. Egaas, P Dippo, Webb, J. J. Granata, K. Ramanathan, S. Asher,A. Swartzlander and, R. Noufi, ‘’On the role of Na and modifications to Cu(In,Ga)Se absorber materials using thin-MF (M = Na, K, Cs) precursor layers.’’ Proc. 26th IEEE Photovoltaic Specialists Conf., Anaheim, p. 359, 1997. [44] J. Holz, F. Karg and H.V. Phillipsborn, ‘’The effect of substrate impurities on the electronic conductivity in CIGS thin films’’, Proc.12th. European Photovoltaic Solar Energy Conf., Amsterdam, pp. 1592, 1994. [45] T. Nakada, T. Mise, T. Kume and A. Kunioka ‘’Superstrate type Cu(In,Ga)Se2 thin film solar cells with ZnO buffer layers - a novel approach to 10% efficiency.’’ Proc. 2nd. World Conf. on Photovoltaic Solar Energy Conversion, Vienna, p. 413, 1998. [46] M. Ruckh, D. Schmid, M. Kaiser, R. Schfffler, T. Walter and H. W. Schock ‘’Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films.’’ Proc. First World Conf. on Photovoltaic Solar Energy Conversion, Hawaii, p. 156, 1994. [47] B.M. Keyes, F. Hasoon, P. Dippo, A. Balcioglu and F. Abouelfotouh ‘’Influence of Na on the elctro-optical properties of Cu(In,Ga)Se2.’’ Proc. 26 th. IEEE Photovoltaic Specialists Conf., Anaheim, p. 4 79, 1997. [48] U. Rau, M. Schmitt, F. Engelhardt, 0. Seifert, J. Parisi, W. Riedl, J. Rimmasch and F. Karg ‘’ Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In,Ga)Se2 solar cells.’’ Solid State Commun, Vol. 107, p. 59, 1998. [49] T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects”, Sol. Energy 85, 1580–1608, 2011. [50] Palm, Jorg, Probst, Volker, Karg, Franz H., “Second generation CIS solar modules”, Solar Energy, Vol. 77,pp. 757–765, 2004. [51] Pisarkiewicz, T., Jankowski, H., Schabowska-Osiowska, E., Mak-symowicz, L.J.,“Fabrication of thin film polycrystalline CIS photovoltaic heterostructure”, Opto-Electron. Rev., Vol 11, pp. 297–304, 2003. [52] Chen, G.S., Yang, J.C., Chan, Y.C., Yang, L.C., Huang, Welson,“Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target”, Sol. Energy Mater. Sol. Cells,Vol 93, pp. 1351–1355, 2009. [53] Dullweber, T., Hanna, G., Shams-Kolahi, W., Schwartzlander, A., Contreras b, M.A., Noufi, R., Schock, H.W.,“Study of the effect of gallium grading in Cu(In,Ga)Se-2”, Vol. 361, Thin Solid Films, pp. 478–481, 2000. [54] Dullweber, T., Hanna, G., Rau, U., Schock, H.W.,“A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se-2 chalcopyrite semiconductors”, Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 145–150, 2001. [55] Goldstein J. I., Newbury D. E., Echlin Joy D. C., Fiori D.C., and Lifshin E., Scanning Electron Microscopy and X-Ray Microanalysis, Plenum, New York , 1981. [56] Ohring M., The Material Science Thin Films, (Academic Press, Inc., New York), 1992. [57] Pankove J.I.,“Absorption edge of Impure Gallium Arsenide”, Physical Review, Vol. 140, pp. 2050-2059, 1965. [58] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000. [59] C. G. Van de Walle, and J. Neugebause, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature (London), Vol. 423, pp. 626-628, 2003. [60] Y. R. Park, J. Kim and Y. S. Kim, “Effect of hydrogen doping in ZnO thin films by pulsed DC magnetron sputtering,” Appl. Surf. Sci., Vol. 255, pp. 9010-9014, 2009. [61] L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, and Y. K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett., Vol. 85, pp. 5628-5630, 2001. [62] V. K. Kapur, A. Bansal, O. I. Asenio, M. K. Shigeoka, P. Le, B. Gergen, M. Rasmussen, and R. Zuniga, Lab to large scale transition for non-vacuum thin film CIGS solar cells, Phase II—Annual Technical Report August 2003–July 2004, January 2005 NREL/SR-520-37284. [63] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure”, Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 209-215, 2001. [64] M. Grossberg, L. Kaupmees, and P. Barvinschi,“SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 11, 2009. [65] Schlenker, T., Luis Valero, M., Schock, H.W., Werner, J.H.,“Grain growth studies of thin Cu(In, Ga)Se2 films”, J. Cryst. Growth, Vol. 264, pp. 178–183, 2004. [66] Goushi, Y., Hakuma, Hideki, Tabuchi, Katsuya, Kijima, Shunsuke, Kushiya, Katsumi, “Fabrication of pentanary Cu(InGa)(SeS)2 absorbers by selenization and sulfurization”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1318–1320, 2009. [67] W.K. Kim, E.A. Payzant, S. Yoon, T.J. Anderson,“In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction”, Journal of Crystal Growth, Vol. 294, pp. 231–235, 2006. [68] W. K. Kim, E. A. Payzant, T. J. Anderson, O. D. Crisalle,“In situ investigation of the selenization kinetics of Cu–Ga precursors using time-resolved high-temperature X-ray diffraction”, Thin Solid Films, Vol. 515, pp. 5837–5842, 2007. [69] M. A. Martinez, J. Herrero and M.T. Gutierrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Mater. Solar Cells 45, 75-86, 1997. [70] C. L. Yeh, S. Z. Tseng, W. T. Lin, C. C. Kuo, and S. H. Chen, “Thermal Stability of Hydrogen-Doped Zinc-Oxide Thin-Films,” Electrochem. Solid-State Lett., Vol. 15, pp. 1-3, 2011. [71] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K. –U. van Osten, K. Dietrich, and R. Rix, “ Hydrogen doping of DC sputtered ZnO:Al films from novel target material” , Surf. Coat. Technol. , Vol. 200, pp. 236-240, 2005.
|