跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許弘儒
研究生(外文):Hsu, Hung Ru
論文名稱:高效率濺鍍銅銦鎵硒太陽電池中鎵分佈及晶粒成長之研究
論文名稱(外文):A study of Ga distribution and grain growth in a high efficient CuInGaSe2 solar cell prepared in a sputtering process using a single CuInGa precursor
指導教授:劉容生劉容生引用關係
指導教授(外文):Liu, Yung-sheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:90
中文關鍵詞:銅銦鎵硒濺鍍三元靶太陽電池鎵分佈
外文關鍵詞:CuInGaSe2sputterCuInGa ternary targetphotovoltaicsolar cellGa distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
銅銦(鎵)硒(Cu(In,Ga)Se2)薄膜是目前最具有潛力的太陽電池材料之一,能隙寬為1.02eV屬直接能隙半導體材料,光學吸收係數為 105 cm-1,所以,只需要1μm厚度便可以吸收90%以上的太陽光。經由控制材料中元素的組成比例,可使得銅銦(鎵)硒薄膜不需要經過額外摻雜便可直接形成n 或p型半導體。如果利用鎵元素來取代部分的銦的位置,可使得能隙從1.04 eV提高到1.68 eV。同理亦可利用硫元素來取代部分的硒的位置,使其形成銅銦(鎵)硒(硫) (Cu(In,Ga)(Se,S)2)薄膜來提高元件的開路電壓(Voc)。
在銅銦(鎵)硒太陽電池的製造技術中,目前以共蒸鍍製程(co-evaporation process)及濺鍍加硒化製程(sputter and selenization process)最具有發展潛力。共蒸鍍製程目前保有小面積銅銦(鎵)硒太陽電池元件最高效率(20%)的紀錄,但卻有著大面積量產不易的缺點。這時利用濺鍍製程沉積銅銦鎵(Cu-In-Ga)前驅物,再通入含硒蒸氣來成長銅銦(鎵)硒薄膜是最有機會實現大面積量產的技術,目前大面積銅銦(鎵)硒太陽電池模組的最高效率為利用濺鍍加硒化製程所保持的15.7%。
在目前濺鍍加硒化製程技術中,主要是利用濺鍍銅鎵(CuGa)及銦(In)靶在鉬玻璃上沉積銅銦鎵前驅物,再利用硒蒸氣或硒化氫(H2Se)與其反應形成銅銦(鎵)硒薄膜。在目前的製造方式中,主要存在著兩個問題需改善,第一、在濺鍍製程中所使用的銦靶屬於低熔點金屬,使其在濺鍍及成膜的製程中容易產生銦聚集的現象,進而影響銅銦(鎵)硒電池元件效率的均勻性。第二、在硒化製程中,鎵元素容易在銅銦(鎵)硒吸收層底層聚集,造成元件開路電壓的不易提升。為了改善上述的問題,本論文的主要研究可分成三個部分:
一、不同銅銦鎵(Cu-In-Ga)前驅物結構的研究及改善:在本論文中利用銅銦鎵三元合金靶來取代傳統銅鎵及銦靶做為濺鍍製程的主要靶材,由我們的實驗結果可以觀察到,傳統銅鎵及銦的疊層方式在硒化反應中,由於銦的聚集使得在硒化反應後,銅銦(鎵)硒薄膜容易產生未完全反應的銅硒(Cu2−xSe)及銦硒(InSe)二次相,這對元件的效率將造成影響,而利用銅銦鎵三元合金靶所沉積的薄膜,明顯的改善傳統沉積方式所產生銦聚集現象,進而改善元件效率的均勻性。針對硒化反應後鎵聚集的問題,在本論文中提出,利用銅銦/銅銦鎵/銦(CuGa/CuInGa/In)的三明治結構來改善銅銦鎵前驅物經硒化後,鎵的分佈及晶粒的成長。由實驗結果可以觀察到,當在銅銦鎵前驅物表面濺鍍一層厚度約125nm的銅鎵層,經硒化反應後,銅銦(鎵)硒薄膜的晶粒明顯的長大,再經由XPS的分析得知,吸收層表面Ga/(In+Ga)的比例由22%提高到32%,這使得元件的開路電壓由390 mV提升至460 mV,提升18.2%。當將膜厚約80 nm的銦層置入銅銦/銅銦鎵(CuGa/CuInGa)前驅物中時,經硒化反應後,可以觀察到銅銦(鎵)硒元件在長波長(900-1150 nm)光的吸收明顯增加,這使得元件的短路電流密度(Jsc)由29 mA/cm2 提升至 33 mA/cm2,提升13.8 %。經由銅銦/銅銦鎵/銦的三明治結構所做成的銅銦(鎵)硒太陽電池元件,可將效率由6.26 %提升至9.52 %,提升50 %。
二、硒化製程對銅銦(鎵)硒薄膜晶粒成長及鎵分佈的研究: 在本研究中針對不同的硒化方式包括1. RTP硒化、2. 硒化氫(H2Se) 硒化及3.硒化後硫化製程(sulferization after selenization process)來討論在不同硒化條件下,對於銅銦(鎵)硒薄膜中晶粒成長及鎵分佈的影響。1. 在RTP硒化製程中,我們利用快速升溫的方式來觀察升溫速率對吸收層中鎵分佈的影響,由實驗結果發現在硒化製程中利用快速升溫的方式,使得升溫過程中銅銦硒(CuInSe2)及銅鎵硒(CuGaSe2)的相幾乎同時生成,由XPS的結果發現鎵並沒有往底部聚集。這個發現提供給我們一種改善甚至有機會控制銅銦(鎵)硒薄膜中鎵分佈的可能方式。2. 在硒化氫(H2Se)硒化製程中,我們發現利用提高硒化溫度到550 oC以上時,可以使得在吸收層底層較小晶粒的銅鎵硒(CuGaSe2)晶粒成長,進而改善元件的電性及效率,使元件效率由9.5% 增加到12.8%,提高34%。3. 在硒化後硫化製程中,我們發現利用降低第一階段硒化製程的溫度,可使得後續硫化製程中的硫更容易進入銅銦(鎵)硒硫的薄膜中,提高元件的開路電壓。但過多的硫元素會讓吸收層的晶粒不易成長,而減少元件電流的收集。經由硒化後硫化製程對開路電壓的改善,可使得元件的效率達到14%。
三、改善銅銦鎵硒太陽電池近紅外光波段光的吸收:由銅銦(鎵)硒太陽電池元件外部量子效率的量測結果發現,電池元件在近紅外光波段的光吸收較差。這是由於目前用來做透明導電層(TCO)的鋁摻雜氧化鋅(ZnO: Al)在近紅外光波段中光的穿透率較差,這是由於ZnO: Al內自由載子在近紅外光波段的光吸收所造成。所以,我們利用在濺鍍純質氧化鋅(i-ZnO)時通入氫氣,與其反應形成氫摻雜氧化鋅(ZnO:H)薄膜,用來取代ZnO: Al層,由實驗結果發現ZnO:H薄膜具有較佳的電子遷移率,可改善在近紅外光波段所產生的自由載子光吸收,使其在近紅外光波段具有較佳的光穿透率,可提高元件的短路電流密度由34.5 到35.6 mA/cm2。

Chalcopyrite compounds of Cu(In,Ga)Se2 and related alloys are among the most promising materials for photovoltaic applications. Sputtering of Cu-In-Ga precursors followed by selenization has been a preferred industrial process for Cu(In,Ga)Se2 solar cell manufacturing. In a sputtering process, many studies using co-sputtering or sequential sputtering from CuGa and In magnetron targets for preparation of the metallic precursors. In this study, the metallic precursors were deposited by sputtering a single Cu-In-Ga ternary target and compared with the In/CuGa stocked precursors and these samples were selenized using the Se vapor. It was observed that Ga tends to segregate near the Mo electrode after selenization thus reducing the band gap of the Cu(In,Ga)Se2 absorber near the surface. Since the open circuit voltage (Voc) depends on the band gap in the space charge region (SCR) near the surface of absorber. The device fabricated using this process, however, tends to have a relatively low Voc value due to the Ga element migration to near the Mo electrode.
一、Proposed and demonstrated a novel sandwiched precursor structure
we demonstrated a novel sandwiched structure to improve the Ga distribution and grain growth in the absorption layer and thus increase the open circuit voltage Voc and Jsc. We discuss the employment of a novel precursor structure using a single CuInGa layer sandwiched between thin CuGa and In layers. This precursor structure was constructed by having a thin CuGa film on top of the CuInGa ternary layer and a thin In layer to the bottom of the CuGa/CuInGa stacked layer. It is observed that when a thin CuGa film was sputtered on top of the surface of CuInGa ternary precursor, it enhanced the grain growth of Cu(In,Ga)Se2 absorber and increased the Ga concentration in the space charge region, therefore improved the open circuit voltage (Voc). In addition, we observed when a thin In layer was added to the bottom of CuGa/CuInGa stacked layer, it reduced the minimum band gap of devices, and therefore increased the absorption of solar spectrum. By employing this novel structure, the open circuit voltage for the solar cell devices in our studies increased by 18.2% (from 390 mV to 460 mV), the short current density by 13.8% (from 29 mA/cm2 to 33 mA/cm2), and the conversion efficiency by 50 % (from 6.26 % to 9.52 %).
二、Investigation of selenization and sulferization process
we discuss three kinds of selenization methods including (a) the RTP process, (b) H2Se selenization process and (c) sulferization after selenization process which were used in studying the Ga distribution and grain growth of Cu(In,Ga)Se2 absorbers under these three selenization processes. In an experiment study of selenization using RTP, our result shows by shortening the annealing time, CuGaSe2 and CuInSe2 would produce almost within the same time and therefore could reduce the segregation of Ga into the bottom of Cu(In,Ga)Se2 absorber. These experiments directly confirmed that the segregation of Ga element due to a difference in the formation temperature of the CuGaSe2 phase higher than that of the CuInSe2 phase.
From the results of our study of the H2Se selenization process using XPS and SEM analyses, it further suggests a higher selenization temperature did not affect the Ga distribution in the absorber, however, it could enhance the grain growth near the bottom of Cu(In,Ga)Se2 absorber. As a result, it lead to an increase of the conversion efficiency of the solar cell devices from 9.5% to 12.8%; an enhancement of about 34%.
From the experiment results of sulferization after the selenization process, the sulfur element incorporate into the Cu(In,Ga)Se2 absorber would form smaller grains. By comparing the results of GIXRD and SEM, it suggests that a lower selenization temperature would increases the S content in the surface area of Cu(In,Ga)(Se,S)2 film and form smaller grains of absorber and the energy band gap of the absorber. As a result, by using sulferization after the selenization process, the open circuit voltage (Voc ) of the device was further improved by 10%, and the overall conversion efficiency of the solar cell devices increased by about 10% from 12.8% to 14%.
三、Near infrared enhancement in Cu(In,Ga)Se2-based solar
Near infrared enhancement in Cu(In,Ga)Se2-based solar cells utilizing a ZnO:H window layer were also investigated in this study. The hydrogen atoms incorporated into a ZnO film as a shallow donor could decrease the resistivity of ZnO film. The ZnO:H film has sa imilar resistivity to that of the ZnO:Al film of about 1.29×10-3 Ω-cm. The advantage of ZnO:H film is higher Hall mobility than ZnO:Al film and thus the carrier concentration of ZnO:H film is lower than that of ZnO:Al film which can decrease free carrier absorption in the NIR. It is found that the cell efficiency is enhanced by 4.8% for the ZnO:H device. This is attributed to the fact that the ZnO:H film has higher transmittance than the ZnO:Al film in the NIR which results in the improvement of short-circuit current (Jsc) from 34.5 to 35.6 mA/cm2.


Chapter 1
Introduction 1
1.1 Progress in thin film photovoltaic research 2
1.2 Cu(In,Ga)Se2 based thin film solar cells 3
1.3 Objectives of this study 6
1.4 The organization and structure of the thesis 6
Chapter 2
Theoretical Background 7
2.1 Material properties of Cu(In,Ga)(Se,S)2 thin film solar cells 7
2.1.1 Lattice structure of Cu(In,Ga)(Se,S)2 7
2.1.2 The Phase Diagram of Cu(In,Ga)(Se,S)2 8
2.1.3 Band Gap Energies of Cu(In,Ga)(Se,S)2 10
2.1.4 The Optical Properties of Ternary Chalcopyrite Semiconductors 12
2.2 Electrical properties and defect physics 13
2.3 The structure and fabrication of Cu(In,Ga)Se2 based solar cell devices 16
2.3.1 Introduction 16
2.3.2 The structure of the Cu(In,Ga)Se2 hetero-junction solar cells 16
2.3.3 Substrate 16
2.3.4 Back Contact 17
2.3.5 The Cu(In,Ga)Se2 absorber layer 17
2.3.6 CdS buffer layer 21
2.3.7 The ZnO:Al window layers 21
2.3.8 Metal grid 22
2.4 Current voltage J-V and diode characteristics 23
2.4.1 Parasitic losses due to serial and shunt conductance 25
2.4.2 Electronic properties of the ZnO/CdS/Cu(In,Ga)(Se,S)2 hetro-junction 25
2.5 Influence of Na on the opto-electrical properties of Cu-based chalcopyrite alloys 27
Chapter 3
Experimental Procedure 29
3.1 Fabrication of the Cu(In,Ga)Se2 devices 31
3.1.1 Substrate 31
3.1.2 Deposition of Molybdenum back contact 31
3.1.3 Formation of Cu(In,Ga)Se2 absorption layers 32
3.1.4 Buffer layer 35
3.1.5 ZnO window layer 36
3.1.6 Al-Ni grid contact 37
3.2 Analysis of characterization of Cu(In,Ga)Se2 materials and devices 38
3.2.1 Introduction 38
3.2.2 The measurement of the thickness of thin films 38
3.2.3 Morphology and composition analysis of the Cu(In,Ga)Se2 films 39
3.2.4 UV-VIS-NIR Spectrometer 41
3.2.5 X-Ray Diffraction (XRD) 42
3.2.6 Efficiency Measurements 43
Chapter 4
Experimental Results 46
4.1 The improvement of the uniformity of Cu(In,Ga)Se2 by using CuInGa/Mo precursors. 48
4.2 The improvement of Ga distribution and grain growth of Cu(In,Ga)Se2 by using sandwiched structure 52
4.2.1 The CuGa was added on top of CuInGa precursor layer 54
4.2.2 The In layer was incorporated into the bottom of CuGa/CuInGa/In precursor 58
4.3 The study of Ga distribution and grain growth of Cu(In,Ga)Se2 by using different selenization processes 63
4.3.1 The improvement of Ga distribution by using rapid thermal process 63
4.3.2 The study of grain growth and Ga distribution in Cu(In,Ga)Se2 by using H2Se selenization process 65
4.3.3 The study of grain growth and the replacement of S in Cu(In,Ga)(Se,S)2 by using sulferization after selenization process 68
4.4 Near infrared enhancement in Cu(In,Ga)Se2-based solar cells 73
4.4.1 The comparison between the ZnO:H and ZnO:Al films 73
4.4.2 The electrical properties of the ZnO:H film 74
Chapter 5
Conclusion 78
5.1 Conclusion 78
5.2 Future Work 81
5.3 Progress of our research project in making the Cu(In,Ga)Se2 solar cells 83
Reference 84


[1] National Renewable Energy Laboratory (NREL), (Internet resource), http://www.nrel.gov/.
[2] M.A. Green, “Photovoltaics: technology overview”, Energy Policy, Vol. 28, pp. 989-998, 2000.
[3] U. Rau and H. W. Schock, lnstitut fur Physikalische Elektronik (IPE), Universitat Stuttgart, Germany
[4]Shigeru Niki, Miguel Contreras, Ingrid Repins, Michael Powalla, Katsumi Kushiya, Shogo Ishizuka and Koji Matsubara, “CIGS absorbers and processes”, Prog. Photovoltaic: Res. Appl., Vol. 18, pp. 453–466, 2010.
[5] M. Kaelin, D. Rudmann, A. N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, Vol. 77, pp. 749-756, 2004.
[6] Wei Li, Yun Sun, Wei Liu, Lin Zhou, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor”, Solar Energy, Vol. 80, pp. 191–195, 2006.
[7] Jen-Chuan Chang, Chia-Chih Chuang, Jhe-Wei Guo, Shu Chun Hsu, Hung-Ru Hsu, Chung-Shin Wu , and Tung-Po Hsieh, “An Investigation of CuInGaSe2 Thin Film Solar Cells by Using CuInGa Precursor ”, Nanoscience and Nanotechnology Letters, Vol. 3,pp. 200–203, 2011.
[8] Min Sik Kim, R. B. V. Chalapathy, Kyung Hoon Yoon, and Byung Tae Ahn, “Grain Growth Enhancement and Ga Distribution of Cu(In 0.7 Ga 0.3)Se2 Film Using Cu2Se Layer on Cu–In–Ga Metal Precursor”, Journal of The Electrochemical Society, Vol. 157, pp. 154-158, 2010.
[9] M Archer, R Hill, “Clean Electricity from Photovoltaics”, Series on Photo conversion of Solar Energy, Vol 1, Published by Imperial Collage Press, London, 2001.
[10] BJ Stanberry, A Davydov, CH Chang, TJ Anderson, (Internet resource),
http://anderson.ch.ufl.edu/Publication/AIF%20vol394%20p579%20(1996).pdf
[11] BJ Stanberry, CH Chang, TJ Anderson, Invited paper presented at the 11th International Conference on Ternary snd Multinary Compounds (ICTM-11), Salford, UK, 12 September, 1997.
[12] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett., Vol. 72, pp. 3199-3201, 1998.
[13] M. Gloeckler, and J. R. Sites, “Efficiency limitations for wide-band-gap chalcopyrite solar cells”, Thin Solid Films, Vol. 480-481, pp. 241-245, 2005.
[14] JE Jaffe, A Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors”, Physical Review B, Vol. 29, pp. 1882-1905, 1984.
[15] H. Neumann, “Optical properties and electronic band structure of CuInSe2”, Solar Cells, Vol. 16, pp. 317-333, 1986.
[16] M. Igalson, and H. W. Schock, “The metastable changes of the trap spectra of CuInSe2‐based photovoltaic devices”, J. Appl. Phys., Vol. 80, pp. 5765-5769, 1996.
[17] M. Schmitt, U. Rau, and J. Parisi,’’ Investigation of deep trap levels in CuInSe2 solar cells by temperature dependent admittance measurements.’’, Proc. 13th European Photovoltaic Solar Energy Conf., Nice, pp. 1969, 1995.
[18] T. Walter, R. Herberholz, C. Muller, and H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions”, J. Appl. Phys., vol. 80, pp. 4411-4420, 1996.
[19] S. M. Wasim, “Transport properties of CuInSe2”, Solar Cells, Vol. 16, pp. 289-316, 1986.
[20] S. B. Zhang, S. H. Wei, and A. Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconductor”, Phys. Rev. B, Vol. 57, pp. 9642-9656, 1998.
[21] J. Klais, H. J. Moller, and D. Cahen, “Calculation and experimental characterization of the defect physics in CuInSe2”, Thin Solid Films, Vol. 361-362, pp. 446-449, 2000.
[22] B. M. Basol, V. K. Kapur, C. R. Leidholm, and A. Halani, “Flexible and light weight copper indium diselenide solar cell”, Proc. 25th IEEE PVSC, pp. 157-162, 1996.
[23] M. Hartmann, M. Schmidt, A. Jasenek, and H. W. Schock, “Flexible and light weight substrates for Cu(In, Ga)Se2 solar cells and modules”, Proc. 28th IEEE PVSC, pp. 638-641, 2000.
[24] T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, “Characterization of the Cu(In, Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, vol. 387, pp. 118-122, 2001.
[25] Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film
solar cells beyond 20%”, Prog. Photovoltaic: Res. Appl., Vol. 19, pp. 894–897, 2011.
[26] John R. Tuttle, M.A. Contreras, J.S. Ward, AL. Tennant, K.R. Ramanathan, J. Keane, and R. Noufi, “Thin-film Cu(In,Ga)Se2 materials and devices: A versatile material for flat-plate and concentrator photovoltaic applications”, SPIE, Vol. 2531, 2001.
[27] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, “Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells”, Progress in Photovoltaics: Research and Applications, Vol. 12, pp. 93–111, 2004.
[28] F. S. Hasoon, Y. Yan, H. Althani, K. M. Jones, H. R. Moutinho, J. Alleman, M. M. Al-Jassim, and R. Noufi, “Microstructural properties of Cu(In, Ga)Se2 thin films used in high-efficiency devices”, Thin Solid Films, Vol. 387, pp. 1-5, 2001.
[29] T. J. Gillespie, B. R. Lanning, C. H. Marshall, and M. Contreras, “Large-area copper indium diselenide (CIS) process, control and manufacturing”, Proc. 26th IEEE PVSC, pp. 403-406, 1997.
[30] V. K. Kapur, B. M. Basol, and E. S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, Vol. 21, pp. 65-72, 1987.
[31] P. Besomi, R. B. Wilson, W. R. Wagner, and R. J. Nelson, “Enhanced indium phosphide substrate protection for liquid phase epitaxy growth of indium‐gallium‐arsenide‐phosphide double heterostructure lasers“, J. Appl. Phys., Vol. 54, pp. 535-539, 1983.
[32]
[33] V. Probst, F. Karg, J. Rimmasch, W. Riedl, W. Stetter, H. Harms and O. Eibl, “Advanced stacked elemental layer progress for Cu(InGa)Se2 thin film photovoltaic devices“, Mat. Res. Soc. Syrup. Proc., Vol. 426, p. 165, 1996.
[34] V. Alberts, S. Zweigart, and H. W. Schock, “Preparation of device quality CuInSe2 by selenization of Se-containing precursors in H2Se atmosphere”, Semicond. Sci. Technol., Vol. 12, pp. 217-223, 1997.
[35] T. Nakada, and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films”, Appl. Phys. Lett., Vol. 74, pp. 2444-2446, 1999.
[36] Westwood W, “Reactive Sputter Deposition”, in Rossnagel S, Cuomo J, Westwood W, Eds, Handbook of Plasma Processing Technology, Chap. 9, Noyes Pub., Park Ridge, NJ ,(1990).
[37] R. Herberholz, V. Nadenau, U. Ruhle, C. Koble, H. W. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules”, Sol. Energy Mater. Sol. Cells, Vol. 49, pp. 227-237, 1997.
[38] G. Hanna, A. Jasenek, U. Rau, and H. W. Schock, “Open circuit voltage limitations in CuIn1-xGaxSe2 thin-film solar cells – dependence on alloy composition”, Phys. Stat. Sol. (a), Vol. 179, pp. R7-R8, 2000.
[39] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, and H. W. Schock, “ZnO/CdS/Cu(In, Ga)Se2 thin film solar cells with improved performance”, Proc. 23th IEEE PVSC, pp. 364-371, 1993.
[40] D. W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. J. Tielsch, and J. E. Fulghum, “Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy”, J. Vac. Sci. Technol. A., Vol. 15, pp. 3044-3049, 1997.
[41] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2”, J. Appl. Phys., Vol. 85, pp. 7214-7218, 1999.
[42] D. Hariskos, M. Ruckh, U. Ruhle, T. Walter, H. W. Schock, J. Hedstrom, and L. Stolt, “A novel cadmium free buffer layer for Cu(In, Ga)Se2 based solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 41-42, pp. 345-353, 1996.
[43] M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, “On the role of Na and modifications to Cu(In, Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers”, Proc. 26th IEEE PVSC, pp. 359-362, 1997.
[43] M.A. Contreras, B. Egaas, P Dippo, Webb, J. J. Granata, K. Ramanathan, S. Asher,A. Swartzlander and, R. Noufi, ‘’On the role of Na and modifications to Cu(In,Ga)Se absorber materials using thin-MF (M = Na, K, Cs) precursor layers.’’ Proc. 26th IEEE Photovoltaic Specialists Conf., Anaheim, p. 359, 1997.
[44] J. Holz, F. Karg and H.V. Phillipsborn, ‘’The effect of substrate impurities on the electronic conductivity in CIGS thin films’’, Proc.12th. European Photovoltaic Solar Energy Conf., Amsterdam, pp. 1592, 1994.
[45] T. Nakada, T. Mise, T. Kume and A. Kunioka ‘’Superstrate type Cu(In,Ga)Se2 thin film solar cells with ZnO buffer layers - a novel approach to 10% efficiency.’’ Proc. 2nd. World Conf. on Photovoltaic Solar Energy Conversion, Vienna, p. 413, 1998.
[46] M. Ruckh, D. Schmid, M. Kaiser, R. Schfffler, T. Walter and H. W. Schock ‘’Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films.’’ Proc. First World Conf. on Photovoltaic Solar Energy Conversion, Hawaii, p. 156, 1994.
[47] B.M. Keyes, F. Hasoon, P. Dippo, A. Balcioglu and F. Abouelfotouh ‘’Influence of Na on the elctro-optical properties of Cu(In,Ga)Se2.’’ Proc. 26 th. IEEE Photovoltaic Specialists Conf., Anaheim, p. 4 79, 1997.
[48] U. Rau, M. Schmitt, F. Engelhardt, 0. Seifert, J. Parisi, W. Riedl, J. Rimmasch and F. Karg ‘’ Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In,Ga)Se2 solar cells.’’ Solid State Commun, Vol. 107, p. 59, 1998.
[49] T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects”, Sol. Energy 85, 1580–1608, 2011.
[50] Palm, Jorg, Probst, Volker, Karg, Franz H., “Second generation CIS solar modules”, Solar Energy, Vol. 77,pp. 757–765, 2004.
[51] Pisarkiewicz, T., Jankowski, H., Schabowska-Osiowska, E., Mak-symowicz, L.J.,“Fabrication of thin film polycrystalline CIS photovoltaic heterostructure”, Opto-Electron. Rev., Vol 11, pp. 297–304, 2003.
[52] Chen, G.S., Yang, J.C., Chan, Y.C., Yang, L.C., Huang, Welson,“Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target”, Sol. Energy Mater. Sol. Cells,Vol 93, pp. 1351–1355, 2009.
[53] Dullweber, T., Hanna, G., Shams-Kolahi, W., Schwartzlander, A., Contreras b, M.A., Noufi, R., Schock, H.W.,“Study of the effect of gallium grading in Cu(In,Ga)Se-2”, Vol. 361, Thin Solid Films, pp. 478–481, 2000.
[54] Dullweber, T., Hanna, G., Rau, U., Schock, H.W.,“A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se-2 chalcopyrite semiconductors”, Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 145–150, 2001.
[55] Goldstein J. I., Newbury D. E., Echlin Joy D. C., Fiori D.C., and Lifshin E., Scanning Electron Microscopy and X-Ray Microanalysis, Plenum, New York , 1981.
[56] Ohring M., The Material Science Thin Films, (Academic Press, Inc., New York), 1992.
[57] Pankove J.I.,“Absorption edge of Impure Gallium Arsenide”, Physical Review, Vol. 140, pp. 2050-2059, 1965.
[58] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
[59] C. G. Van de Walle, and J. Neugebause, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature (London), Vol. 423, pp. 626-628, 2003.
[60] Y. R. Park, J. Kim and Y. S. Kim, “Effect of hydrogen doping in ZnO thin films by pulsed DC magnetron sputtering,” Appl. Surf. Sci., Vol. 255, pp. 9010-9014, 2009.
[61] L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, and Y. K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett., Vol. 85, pp. 5628-5630, 2001.
[62] V. K. Kapur, A. Bansal, O. I. Asenio, M. K. Shigeoka, P. Le, B. Gergen, M. Rasmussen, and R. Zuniga, Lab to large scale transition for non-vacuum thin film CIGS solar cells, Phase II—Annual
Technical Report August 2003–July 2004, January 2005 NREL/SR-520-37284.
[63] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure”, Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 209-215, 2001.
[64] M. Grossberg, L. Kaupmees, and P. Barvinschi,“SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 11, 2009.
[65] Schlenker, T., Luis Valero, M., Schock, H.W., Werner, J.H.,“Grain growth studies of thin Cu(In, Ga)Se2 films”, J. Cryst. Growth, Vol. 264, pp. 178–183, 2004.
[66] Goushi, Y., Hakuma, Hideki, Tabuchi, Katsuya, Kijima, Shunsuke, Kushiya, Katsumi, “Fabrication of pentanary Cu(InGa)(SeS)2 absorbers by selenization and sulfurization”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1318–1320, 2009.
[67] W.K. Kim, E.A. Payzant, S. Yoon, T.J. Anderson,“In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction”, Journal of Crystal Growth, Vol. 294, pp. 231–235, 2006.
[68] W. K. Kim, E. A. Payzant, T. J. Anderson, O. D. Crisalle,“In situ investigation of the selenization kinetics of Cu–Ga precursors using time-resolved high-temperature X-ray diffraction”, Thin Solid Films, Vol. 515, pp. 5837–5842, 2007.
[69] M. A. Martinez, J. Herrero and M.T. Gutierrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Mater. Solar Cells 45, 75-86, 1997.
[70] C. L. Yeh, S. Z. Tseng, W. T. Lin, C. C. Kuo, and S. H. Chen, “Thermal Stability of Hydrogen-Doped Zinc-Oxide Thin-Films,” Electrochem. Solid-State Lett., Vol. 15, pp. 1-3, 2011.
[71] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K. –U. van Osten, K. Dietrich, and R. Rix, “ Hydrogen doping of DC sputtered ZnO:Al films from novel target material” , Surf. Coat. Technol. , Vol. 200, pp. 236-240, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊