跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:費祥霆
研究生(外文):Hsiand-Ting Fei
論文名稱:跳動的液珠與震盪的液體表面的交互作用
論文名稱(外文):Interactions of the Bouncing Drops and the Oscillatory Liquid Surface
指導教授:曲宏宇
指導教授(外文):Hong-Yu Chu
口試委員:林俊元陳培亮
口試委員(外文):Jiunn-Yuan LinPei-long Chen
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:51
中文關鍵詞:液珠震盪矽油渦流
外文關鍵詞:bouncingdroposcillatingsurfacestreamingvortex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
When a viscous drop is placed on the vertically oscillating liquid bath
with the same fluid, the drop can bounce on the surface for a long time.
We investigate the deformation and the mobility of the bouncing drop induced
by the distorted surface. When the driving frequency is similar to
the ”Rayleigh” frequency fR of the drop, the resonance between the surface
and the bouncing drop occurs. Then the drop is gradually elongated to ellipse
shape. The drop finally rotates and progresses unidirectionally like a
”glider” on the surface. The effect of the shear force acting on the drop from
the surface is observed by the elongate shape of the drop. From the particle
image velocimetry technique, the pattern of flow field under the surface is
visualized which shows the steady streaming vortex flow on the both sides
of the drop. Therefore, when the two drops bounce on the surface simultaneously,
the steady streaming flow mediates the two drops and present three
different coupling states. We found that the coupling distances decrease with
the driving frequency increasing and are related to the capillary wavelength.
The flow fields of each coupling state shows the different velocity distributions
which indicates the various reason of the coupling drops. As the driving
frequency is near the fR, the two bouncing drops present the coupling oscillation
motion on the horizontal direction where the streaming flow field
plays the role of connecting the two drops.
1 Introduction .......................................................i
2 Background .........................................................v
2.1 Bouncing Drop . . . . . . . . . . . . . . . . . . . . . . . . . . v
2.1.1 Drop Impact on Liquid Interface . . . . . . . . . . . . . . . 5
2.1.2 Shape Deformation of Drop and surface . . . . . . . . . . . .8
2.1.3 Wave-drop association . . . . . . . . . . . . . . . . . . . . 11
2.2 Capillary Wave . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Steady Streaming Flow . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Particle Image Velocimetry Technique . . . . . . . . . . . . . . .19
3 Experimental Setup . . . . . . . . . . . . . . . . 21
4 Result and Discussion . . . . . . . . . . . . . . . 24
4.1 Wave-Propelled Bouncing Drop . . . . . . . . . . . . . . . . . . 25
4.2 Vortex Structures Induced by Bouncing drop . . . . . . . . . . . 30
4.3 Different States of Coupling Drops . . . . . . . . . . . . . . . 35
4.4 Interaction between the flow field and the coupling drops . . . . 39
5 Conclusion . . . . . . . . . . . . . . . . . . . 44
[1] Michael S. Longuet-Higgins. Viscous streaming from an oscillating
spherical bubble. Proc. R. Soc. Lond. A, 454, 1998.
[2] T. M. Squires and S. R. Quake. Microfluidics: Fluid physics at the
nanoliter scale. Rev. Mod. Phys., 77, 2005.
[3] Lord Rayleigh. On the capillary phenomena of jets. Proc. R. Soc. Lond,
29, 1879.
[4] S.G Mason G.E Charles. The coalescence of liquid drops with flat liquid/
liquid interfaces. Annu. Rev. Fluid Mech., 15, 1960.
[5] Matthew Thrasher, Sunghwan Jung, Yee Kwong Pang, Chih-Piao Chuu,
and Harry L. Swinney. Bouncing jet: A newtonian liquid rebounding
off a free surface. Phys. Rev. E, 76:056319, Nov 2007.
[6] Christophe Pirat, Luc Lebon, Antoine Fruleux, Jean-S´ebastien Roche,
and Laurent Limat. Gyroscopic instability of a drop trapped inside an
inclined circular hydraulic jump. Phys. Rev. Lett., 105, 2010.
[7] C. H. Gautier Y. Couder, E. Fort and A. Boudaoud. From bouncing to
floating: Noncoalescence of drops on a fluid bath. Phys. Rev. Lett., 94,
2005.
[8] N. Vandewalle T. Gilet, D. Terwagne and S. Dorbolo. Dynamics of a
bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett.,
100, 2008.
[9] N Vandewalle S Dorbolo, D Terwagne and T Gilet. Resonant and rolling
droplet. New Journal of Physics., 10, 2008.
[10] Emmanuel Fort Suzie Proti‘ere, Yves Couder and Arezki Boudaoud.
The self-organization of capillary wave sources. Europhysics Letters, 17,
2005.
[11] S. Bohn S. Protire and Y. Couder. Exotic orbits of two interacting wave
sources. PHYSICAL REVIEW E, 78, 2008.
[12] E. Fort A. Eddi, D. Terwagne and Y. Couder. Wave propelled ratchets
and drifting rafts. Europhysics Letters, 82, 2008.
[13] A. Boudaoud A. EDDI and Y. Couder. Oscillating instability in bouncing
droplet crystals. Europhysics Letters, 94, 2011.
[14] Hsiang-Ting Fei Hong-Yu Chu and Chang-Rong Ko. One-dimensional
wave-propelled bouncing drop on an oscillating liquid bath. PHYSICS
OF FLUIDS.
[15] N. Riley. On a sphere oscillating in a viscous fluid. [Qnart. Jonrn. Mech.
and Applied Math., 1966.
[16] Philippe Marmottant and Sascha Hilgenfeldt. Controlled vesicle deformation
and lysis by single oscillating bubbles. Nature(London).
[17] Philippe Marmottant and Sascha Hilgenfeldt. A bubble-driven microfluidic
transport element for bioengineering. Proc. Natl Acad. Sci(USA).
[18] J. Walker. Drops of liquid can be made to float on the liquid. what
enables them to do so? Sci. Am., 6, 1978.
[19] Anne-Laure Biance and Christophe Clanet. Leidenfrost drops.
PHYSICS OF FLUIDS, 15, 2003.
[20] J. E. Connett. Curious bubbles in which a gas encloses a liquid instead
of the other way around. Scienti c American, 77, 1974.
[21] T. Gilet and John W. M. Bush. Chaotic bouncing of a droplet on a soap
film. Phys. Rev. Lett., 102:014501, Jan 2009.
[22] P. Brunet, J. Eggers, and R. D. Deegan. Vibration-induced climbing of
drops. Phys. Rev. Lett., 99:144501, Oct 2007.
[23] Xavier Noblin, Richard Kofman, and Franck Celestini. Ratchetlike motion
of a shaken drop. Phys. Rev. Lett., 102:194504, May 2009.
[24] H. Linke, B. J. Alem´an, L. D. Melling, M. J. Taormina, M. J. Francis,
C. C. Dow-Hygelund, V. Narayanan, R. P. Taylor, and A. Stout. Selfpropelled
leidenfrost droplets. Phys. Rev. Lett., 96:154502, Apr 2006.
[25] AREZKI BOUDAOUD SUZIE PROTIE‘ RE and YVES COUDER.
Particle-wave association on a fluid interface. Fluid Mech, 554, 2006.
[26] Lord Rayleigh. On maintained vibrations. Philos. Mag., 48, 1883.
[27] D. Klotsa, Michael R. Swift, R. M. Bowley, and P. J. King. Chain
formation of spheres in oscillatory fluid flows. Phys. Rev. E, 79:021302,
Feb 2009.
[28] D. Klotsa, Michael R. Swift, R. M. Bowley, and P. J. King. Interaction
of spheres in oscillatory fluid flows. Phys. Rev. E, 76:056314, Nov 2007.
[29] Henri Pitot. Description d’une machine pour mesurer la vitesse des eaux
courantes et le sillage des vaisseaux. History of the Royal Academy of
Sciences with the memories of mathematics and physics from the records
of the Academy., 1732.
[30] J. Kristian Sveen. An introduction to matpiv v. 1.6.1. Mechanics and
Applied Mathematics, 15, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top