跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/06 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾柏升
研究生(外文):Bo-sheng Tzeng
論文名稱:人字型溝槽軸頸軸承之液動潤滑動態特性分析
論文名稱(外文):Dynamic Characteristic Analysis of Hydrodynamic Lubrication in Herringbone-Grooved Journal Bearings
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):Rong-Tsong LeeYuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:人字型溝槽軸頸軸承油膜座標轉換油膜運算改良動態特性分析
外文關鍵詞:modified oil film thickness calculationoil film coordinates transformationherringbone-grooved journal bearingdynamic characteristic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文針對人字型主軸溝槽(GJPS)和軸襯溝槽(PJGS)之軸頸軸承的設計參數進行液動潤滑穩態和動態特性分析,設計參數包括溝槽寬度比、溝槽深度比、溝槽角度、和溝槽位置。過去對於GJPS和PJGS軸頸軸承均使用相同之油膜方程式,本文修正GJPS軸頸軸承的油膜方程式以獲得更精確值,並轉換座標而求得新雷諾方程式,可運用於任意溝槽角度之模擬,並得到各設計參數之穩態解。再使用微擾法將非線性動態雷諾氏方程式簡化為線性,得到各設計參數之暫態解及動態性質,探討設計參數對負載能力、剛性係數、阻尼係數、和臨界質量的影響。
數值結果顯示兩種軸頸軸承在溝槽寬度比為0.5、偏心比為0.2、溝槽深度比為1.0、溝槽角度為33度時的負載能力為最佳,但是 PJGS軸頸軸承負載能力高於GJPS軸頸軸承。在溝槽寬度比為0.5、偏心比為0.3、溝槽深度比為1.0、溝槽角度為28度條件下,剛性係數與阻尼係數可達最大值,但是PJGS軸頸軸承動態係數高於GJPS軸頸軸承,其臨界質量與臨界振動頻率為最小且最穩定,但是PJGS軸頸軸承比GJPS軸頸軸承的穩定性佳。
The steady and dynamic characteristics of the hydrodynamic lubrication for the herringbone-grooved journal bearing with plain sleeve (GJPS) and plain journal bearing with grooved sleeve (PJGS) are analyzed under various design parameters, including the ratio of groove width, ratio of groove depth, groove angle, and position of groove. In the previous studies, the equation of film thickness used by GJPS and PIGS is the same. It has been corrected by this study to obtain an accurate film thickness for GJPS. Reynolds equations suitable for all groove angles are derived using the coordinate conversion, so that it can be applied to obtain the steady state solution under various design parameters. A perturbation method is used to linearize the nonlinear dynamic Reynolds equations, so that the transient state solutions and dynamic characteristics under various design parameters can be obtained. Effects of the design parameters on the load capacity, stiffness coefficient, damping coefficient and critical mass are investigated.
Numerical results show that GJPS and PJGS have the greatest load capability at ratio of groove width 0.5, eccentricity ratio 0.2, ratio of groove depth 1.0, and groove angle 33 degrees, but PJGS has higher load capability than that of GJPS. At ratio of groove width 0.5, eccentricity ratio 0.3, ratio of groove depth 1.0, and groove angle 28 degrees, stiffness and damping coefficients achieve a maximum value, but PJGS has higher values of the stiffness and damping coefficients than that of GJPS. Moreover, their critical mass and onset whirl ratio achieve minimum with most stable, but PJGS is more stable than that GJPS.
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 vii
表次 x
符號說明 xi
第一章 緒論 1
1.1 簡介 1
1.2 研究目的 2
1.3 文獻回顧 3
1.4 論文架構 5
第二章 研究方法及步驟 9
2.1 雷諾氏方程式 9
2.2 座標轉換法 11
2.3 動態雷諾氏方程式 16
2.4 油膜負荷參數 27
2.5 軸承穩定性之分析 27
2.6 油膜厚度改良 32
第三章 結果與討論 46
3.1 與理論模擬比較 46
3.2 與實驗結果比較 48
3.3 人字型溝槽軸頸軸承之幾何分析 49
3.4 人字型溝槽軸頸軸承之動態特性分析 52
第四章 結論 74
參考文獻 75
【1】B. J. Hamrock, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York. (1994) 141-290 & 329-367.
【2】R. T. Whipple, Herringbone Patten Thrust Bearing, Atomic Energy Establishment, Herwell. (1949).
【3】J. H. Vohr, C. Y. Chow, Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings, Transactions of the ASME, Journal of Basic Engineering. (1965) 568-578.
【4】G. G. Hirs, The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings, ASLE Transactions. 8 (1965) 296-305.
【5】C. Y. Chow, Helical-Grooved Journal Bearing Operated in Turbulent Regime, Transactions of the ASME, Journal of Lubrication Technology. (1970) 346-358.
【6】C. H. CHEN and C. K. CHEN, “The Influence of Fluid Inertia on the Operating Characteristics of Finite Journal Bearings”, Wear, (1989), Vol. 131, 229-240.
【7】N. Kawabata, A Study on the Numerical Analysis of Fluid Film Lubrication by the Boundary-Fitted Coordinates System (The Case of Steady Gas-Lubrication), JSME International Journal, Series 3, 32(2) (1989) 281-288.
【8】N. Kawabata, Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing, Transactions of the ASME, Journal of Tribology. 111 (1989) 484-490.
【9】D. Bonneau, Analysis of Aerodynamic Journal Bearings with Small Number of Herringbone Grooves by Finite Element Method, Transactions of the ASME, Journal of Tribology. 116 (1994) 698-704.
【10】K. Kang, Y. Rhim, T. Son, K. Sung, H. Choi, “Numerical Analysis Of The Oil-lubricated Herringbone- grooved Journal Bearing For VCR Drum Assembly”, Consumer Electronics, (1995) 26-27.
【11】K. Kang, A Study of the Oil-Lubricated Herringbone-Grooved Journal Bearing – Part1: Numerical Analysis, Transactions of the ASME, Journal of Tribology. 118 (1996) 906-911.
【12】N. Zirkelback, Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study, Transactions of the ASME, Journal of Tribology. 120 (1998) 234-240.
【13】T. Kobayashi, Numerical Analysis of Herringbone-Grooved Gas-Lubricated Journal Bearings Using a Multigrid Technique, Transactions of ASME, Journal of Tribology. 121 (1999) 148-156.
【14】S. Yoshimoto, Pumping Characteristics of a Herringbone-Grooved Journal Bearing Functioning as a Viscous Vacuum Pump, ASME, Journal of Tribology. 122 (2000) 131-136.
【15】G. H. Jang, D. I. Chang, Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation, Journal of Tribology, ASME. 122 (2000) 103-109.
【16】G. H. Jang, J. W. Yoon, Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove, Journal of Tribology, ASME. 124 (2002) 297-304.
【17】T. Hirayama, A Theoretical Analysis Considering Cavitation Occurrence in Oil-Lubricated Spiral-Grooved Journal Bearings With Experimental Verification, Journal of Tribology, Transactions of the ASME. 126 (2004) 490-498.
【18】M. Sahu, M. Sarangi, Thermo-hydrodynamic Analysis of Herringbone Grooved Journal Bearings, Tribology International. 39 (2006) 1395-1404.
【19】J. M., Miao, B. H. Chang, and P. H. Chen, Numerical Predictions of a Flow Field in a Hydrodynamic Journal Bearing with Herringbone Microgrooves, Progress in Computational Fluid Dynamics. 8 (2008) 486-495.
【20】J. Liu, Analysis of Oil-lubricated Herringbone Grooved Journal Bearing with Trapezoidal Cross-section, Using a Spectral Finite Difference Method, 9th International Conference on Hydrodynamics, Shanghai. (2010) 11-15.
【21】S. K. Chen, Stability Analysis of Hydrodynamic Bearing with Herringbone Grooved Sleeve, Tribology International. 55 (2012) 15-28.
【22】J. Wan, A Numerical Study of Cavitation Foot-prints in Liquid-lubricated Asymmetrical Herringbone Grooved Journal Bearings, International Journal of Numerical Methods for Heat & Fluid Flow. 12(5) (2014) 518-540.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top