|
鄧仁星,2000:RASTA(Radar Analysis System for Taiwan Area)使用說明書。 Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observations. NOAA Tech. Memo. Erl Nssl-62, 60pp. Crook, N. A., and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888–898. Crook, N. A., and J. Sun, 2004: Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project. Weather and Forecasting, 19, 151-167. Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606. Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system, J. Meteor. Soc. Japan, 85, 255-276. Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011:A cloud-resolving 4D-Var assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area, Mon. Wea. Rev., AMS early release version. Lin, Y., P. Ray, and K. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar derived fields. Mon. Wea. Rev., 121, 2757–2775. Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon.Wea. Rev., 131, 1663–1677. Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661. Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852. Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132. Sun, J., 2005a: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813. ____, and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations, Mon. Wea. Rev., 136, 2364–2388. ____, M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesocale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715-1735. Warner, T. T., E. E. Brandes, C. K. Mueller, J. Sun, and D. N. Yates, 2000: Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39, 815–825. Tai, S.-C., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975–992. Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807. Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788. Xiao, Q., and J. Sun, 2007: Multiple radar data assimilation and short-range QPF of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3318–3404.
|