|
[1] Alfares, H. K. (2007). Inventory model with stock-level dependent demand rate and variable holding cost. International Journal of Production Economics , 108 , 259–265.
[2] Arslan, C., &; Turkay, M. (2010). EOQ Revisited with Sustainability Consider- ations . Working Paper Koç University Istanbul, Turkey.
[3] Baker, R., &; Urban, T. L. (1988). Single-period inventory dependent demand models. Omega , 16 , 605–607.
[4] Baker, R. C., &; Urban, T. L. (1988). A deterministic inventory system with an inventory-level-dependent demand rate. Journal of the Operational Research Society , 39 , 823–831.
[5] Battini, D., Persona, A., &; Sgarbossa, F. (2013). A sustainable eoq model: Theoretical formulation and applications. International Journal of Production Economics , (pp. –).
[6] Benjaafar, S., Li, Y., &; Daskin, M. (2010). Carbon Footprint and the Manage- ment of Supply Chains: Insights From Simple Models . Working Paper Univer- sity of Minnesota, Minnesota.
[7] Bouchery, Y., Ghaffari, A., Jemai, Z., &; Dallery, Y. (2012). Including sus- tainability criteria into inventory models. European Journal of Operational Research , 222 , 229–240.
[8] Chang, C.-T., Teng, J.-T., &; Goyal, S. K. (2010). Optimal replenishment poli- cies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics , 123 , 62–68.
[9] Chen, X., Benjaafar, S., &; Elomri, A. (2013). The carbon-constrained eoq.
Operations Research Letters , 41 , 172–179.
[10] Datta, T., &; Pal, A. (1990). A note on an inventory-level-dependent demand rate. Journal of the Operational Research Society , 41 , 971–975.
[11] Desmet, P., &; Renaudin, V. (1998). Estimation of product category sales responsiveness to allocated shelf space. International Journal of Research in Marketing , 15 , 443–457.
[12] Dye, C.-Y. (2013). The effect of preservation technology investment on a non- instantaneous deteriorating inventory model. Omega , 41 , 872–880.
[13] Dye, C.-Y., &; Hsieh, T.-P. (2013). A particle swarm optimization for solving lot-sizing problem with fluctuating demand and preservation technology cost under trade credit. Journal of Global Optimization , 55 , 655–679.
[14] Dye, C. Y., &; Ouyang, L. Y. (2005). An eoq model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research , 163 , 776–783.
[15] Giri, B. C., &; Chaudhuri, K. S. (1998). Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost. Eu- ropean Journal of Operational Research , 105 , 467–474.
[16] Giri, B. C., Pal, S., Goswami, A., &; Chaudhuri, K. S. (1996). An inventory model for deteriorating items with stock-dependent demand rate. European Journal of Operational Research , 95 , 604–610.
[17] Goh, M. (1994). Eoq models with general demand and holding cost functions.
European Journal of Operational Research , 73 , 50–54.
[18] Gupta, R., &; Vrta, P. (1986). Inventory model for stock-dependent consumption rate. Opsearch , 23 , 19–24.
[19] He, Y., &; Huang, H. (2013). Optimizing inventory and pricing policy for seasonal deteriorating products with preservation technology investment. Journal of Industrial Engineering , (pp. Article ID 793568, 7 pages, 2013. doi:10.1155/2013/793568).
[20] Hsu, P., Wee, H., &; Teng, H. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics , 124 , 388–394.
[21] Hua, G., Cheng, T. C. E., &; Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics , 132 , 178–185.
[22] Hua, G., Qiao, H., &; Jian, L. (2011). Optimal order lot sizing and pricing with carbon trade. SSRN eLibrary , Available at SSRN: http://dx.doi.org/10.2139/ssrn.1796507 .
[23] Jolai, F., Tavakkoli-Moghaddam, R., Rabbani, M., &; Sadoughian, M. (2006).
An economic production lot size model with deteriorating items, stock- dependent demand, inflation, and partial backlogging. Applied Mathematics and Computation , 181 , 380–389.
[24] Lee, Y.-P., &; Dye, C.-Y. (2012). An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Computers &; Industrial Engineering , 63 , 474–482.
[25] Levin, R. I., McLaughlin, C. P., Lamone, R. P., &; Kottas, J. F. (1972). Produc- tions/Operations Management: Contemporary Policy for Managing Operating Systems . McGraw-Hill, New York.
[26] Mandal, B., &; S., P. (1989). An inventory model for deteriorating items and stock-dependent consumption rate. Journal of the Operational Research Soci- ety , 40 , 483–488.
[27] Padmanabhan, G., &; Vrat, P. (1995). Eoq models for perishable items under stock dependent selling rate. European Journal of Operational Research , 86 , 281–292.
[28] Pando, V., San-José, L. A., García-Laguna, J., &; Sicilia, J. (2013). An eco- nomic lot-size model with non-linear holding cost hinging on time and quantity. International Journal of Production Economics , 145 , 294–303.
[29] Sarkar, B. (2012). An eoq model with delay in payments and stock dependent demand in the presence of imperfect production. Applied Mathematics and Computation , 218 , 8295–8308.
[30] Sarkar, B., &; Sarkar, S. (2013). An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Eco- nomic Modelling , 30 , 924–932.
[31] Singh, S. R., &; Sharm, S. (2013). A global optimizing policy for decaying items with ramp-type demand rate under two-level trade credit financing taking ac- count of preservation technology. Advances in Decision Sciences , 2013 , Article ID 126385, 12 pages, 2013. doi:10.1155/2013/126385.
[32] Song, J., &; Leng, M. (2012). Analysis of the single-period problem under carbon emissions policies. In T.-M. Choi (Ed.), Handbook of Newsvendor Problems (pp. 297–313). Springer New York volume 176 of International Series in Operations
Research &; Management Science .
[33] Soni, H., &; Shah, N. H. (2008). Optimal ordering policy for stock-dependent demand under progressive payment scheme. European Journal of Operational Research , 184 , 91–100.
[34] Soni, H. N. (2013). Optimal replenishment policies for non-instantaneous dete- riorating items with price and stock sensitive demand under permissible delay in payment. International Journal of Production Economics , 146 , 259–268.
[35] Teng, J. T., &; Chang, C. T. (2005). Economic production quantity models for deteriorating items with price- and stock-dependent demand. Computers &; Operations Research , 32 , 297–308.
[36] Urban, T. L. (1995). Inventory models with the demand rate dependent on stock and shortage levels. International Journal of Production Economics , 40 , 21–28.
[37] Whitin, T. (1953). The Theory of Inventory Management . Princeton University
Press.
[38] Wu, K.-S., Ouyang, L.-Y., &; Yang, C.-T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics , 101 , 369–384.
[39] Wu, P., Jin, Y., &; Shi, Y. (2011). The impact of carbon emission considerations on manufacturing value chain relocation. In Operations and the environment . EurOMA Conference University of Cambridge: Cambridge University Press.
[40] Yang, H.-L., Teng, J.-T., &; Chern, M.-S. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics , 123 , 8–19.
[41] Zhang, B., &; Xu, L. (2013). Multi-item production planning with carbon cap and trade mechanism. International Journal of Production Economics , 144 , 118–127.
|