|
Arora, R., P. Agarwal, S. Ray, A.K. Singh, V.P. Singh, A.K. Tyagi, and S. Kapoor. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8: 242. Bai, X., Q. Wang, and C. Chu. 2008. Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res. 17: 1035-1043. Chen, C.S., R.K. Chen, H.H. Chin, and Y.R. Lin. 2010. Introgression of three heading date gene, hd1, Hd6, and ehd1, to Oryza sativa L. japonica cv. Koshihikari by marker-assisted selection. Crop, Environ. & Bioinformatics 7:1-20. Chen, P.W., C.A. Lu, T.S. Yu, T.H. Tseng, C.S. Wang, and S.M. Yu. 2002. Rice α-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J. Biol. Chem. 277: 13641-13649. Chen, P.J. 2008 Functional analysis of an abnormal growth mutant M00039314. Master’s dissertation, National Chung Hsing University. Chien, H.T., R.K. Chen, A.L. Hour, C.S. Chen, and Y.R. Lin. 2011. The effects of Hd1, Hd6, and Ehd1 on rice heading date. Crop, Environ. & Bioinformatics 8:45-57. Ciaffi, M., A.R. Paolacci, O.A. Tanzarella, and E. Porceddu. 2011. Molecular aspects of flower development in grasses. Sex. Plant Reprod. 24:247-282. Cui, R.F., J.K. Han, S.H. Zhao, K.M. Su, F. Wu, X.Q. Du, Q.J. Xu, K. Chong, G. Theißen, and Z. Meng. 2010. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J. 61: 767-781. Doi, K., T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, and A. Yoshimura. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18: 926-936. Dreni, L., S. Jacchia, F. Fornara, M. Fornari, P.B.F. Ouwerkerk, G. An, L. Colombo, and M.M. Kater. 2007. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J. 52: 690-699. Duan, Y., Z. Xing, Z. Diao, W. Xu, S. Li, X. Du, G. Wu, C. Wang, T. Lan, Z. Meng, H. Liu, F. Wang, W. Wu, and Y. Xue. 2012. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol. Biol. 80: 429-442. Endo-Higashi, N., and T. Izawa. 2011. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol. 52: 1083-1094. Favaro, R., R.G.H. Immink, V. Ferioli, B. Bernasconi, M. Byzova, G.C. Angenent, M. Kater, and L. Colombo. 2002. Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol. Genet. Genomics 268: 152-159. Fornara, F., L. Parˇenicova′, G. Falasca, N. Pelucchi, S. Masiero, S. Ciannamea, Z. Lopez-Dee, M.M. Altamura, L. Colombo, and M.M. Kater. 2004. Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS-box Genes. Plant Physiol. 135: 2207-2219. Gao, H., X.M. Zheng, G. Fei, J. Chen, M. Jin, Y. Ren, W. Wu, K. Zhou, P. Sheng, F. Zhou, L. Jiang, J. Wang, X. Zhang, X. Guo, J.L. Wang, Z. Cheng, C. Wu, H. Wang, and J.M. Wan. 2013. Ehd4 encodes a novel and oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet. 9: e1003281. Greco, R., L. Stagi, L. Colombo, G.C. Angenent, M. Sari-Gorla, and M.E. Pè. 1997. MADS-box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253: 615-623. Greenup, A., W.J. Peacock, E.S. Dennis, and B. Trevaskis. 2009. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103: 1165-1172. Hayama, R., and G. Coupland. 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135: 677-684. Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722. Honma, T., and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Hsu, H.F., C.H. Huang, L.T. Chou, and C.H. Yang. 2003. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794. Izawa, T. 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58: 3091-3097. Jeon, J.S., S. Lee, K.H. Jung, W.S. Yang, G.H. Yi, B.G. Oh, and G. An. 2000a. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6: 581-592. Jeon, J.S., S. Jang, S. Lee, J. Nam, C. Kim, S.H. Lee, Y.Y. Chung, S.R. Kim, Y.H. Lee, Y.G. Cho, and G. An. 2000b. leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell 12: 871-884. Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25-34. Kim, S.K., C.H. Yun, J.H. Lee, Y.H. Jang, H.Y. Park, and J.K. Kim. 2008. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228: 355-365. Kim, S.L., S. Lee, H.J. Kim, H.G. Nam, and G. An. 2007. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol. 145: 1484-1494. Kobayashi, K., N. Yasuno, Y. Sato, M. Yoda, R. Yamazaki, M. Kimizu, H. Yoshida, Y. Nagamura, and J. Kyozuka. 2012. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-Like MADS-box genes and PAP2, a SEPALLATA MADS-box gene. Plant Cell 24: 1848–1859. Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. 2002. Hd3a, a rice ortholog of the Arabidopsis FT Gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43: 1096-1105. Komiya, R., S. Yokoi, and K. Shimamoto. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443-3450. Komiya, R., A. Ikegami, S. Tamaki, S. Yokoi, and K. Shimamoto. 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135: 767-774. Koo, S.C., O. Bracko, M.S. Park, R. Schwab, H.J. Chun, K.M. Park, J.S. Seo, V. Grbic, S. Balasubramanian, M. Schmid, F. Godard, D.J. Yun, S.Y. Lee, M.J. Cho, D. Weigel, and M.C. Kim. 2010. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant J. 62: 807-816. Koornneef, M., C. Alonso-Blanco, A.J.M. Peeters, and W. Soppe. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370. Lee, S., J. Kim, J.J. Han, M.J. Han, and G. An. 2004. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 38: 754-764. Lim, J., Y.H. Moon, G. An, and S.K. Jang. 2000. Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44: 513-527. Lin, S.Y., J.D. Wang, and J.H. Lin. 2009. Expression of Trigonopsis variabilis D-amino acid oxidase in transgenic rice for cephalosporin production. Bot. Stud. 50: 181-192. Lin, Y.R., S.C. Wu, S.E. Chen, T.H. Tseng, C.S. Chen, S.C. Kuo, H.P. Wu, and Y.I.C. Hsing. 2011. Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot. Stud. 52: 1-14. Lopez-Dee, Z.P., P. Wittich, M. Enrico Pè, D. Rigola, I. Del Buono, M.S. Gorla, M.M. Kater, and L. Colombo. 1999. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25: 237-244. Masiero, S., C. Imbriano, F. Ravasio, R. Favaro, N. Pelucchi, M.S. Gorla, R. Mantovani, L. Colombo, and M.M. Kater. 2002. Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J. Biol. Chem. 277: 26429-26435. Matsubara, K., U. Yamanouchi, Z.X. Wang, Y. Minobe, T. Izawa, and M. Yano. 2008. Ehd2, a rice ortholog of the maize INDETERMINATE1 Gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148: 1425-1435. Moon, Y.H., J.Y. Jung, H.G. Kang, and G. An. 1999a. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167-177. Moon, Y.H., H.G. Kang, J.Y. Jung, J.S. Jeon, S.K. Sung, and G. An. 1999b. Determination of the Motif Responsible for Interaction between the Rice APETALA1 AGAMOUS-LIKE9 Family Proteins Using a Yeast Two-Hybrid System. Plant Physiol. 120: 1193–1203. Osugi, A., H. Itoh, K. Ikeda-Kawakatsu, M. Takano, and T. Izawa. 2011. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol. 157: 1128-1137. Park, S.J., S.L. Kim, S. Lee, B.I. Je, H.L. Piao, S.H. Park, C.M. Kim, C.H. Ryu, S.H. Park, Y.h. Xuan, J. Colasanti, G. An, and C.d. Han. 2008. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56: 1018-1029. Pelaz, S., G.S. Ditta, E. Baumann, E. Wisman, and M.F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. Ryu, C.H., S. Lee, L.H. Cho, S.L. Kim, Y.S. Lee, S.C. Choi, H.J. Jeong, J. Yi, S.J. Park, C.D. Han, and G. An. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ. 32: 1412-1427. Sato, Y., B.A. Antonio, N. Namiki, H. Takehisa, H. Minami, K. Kamatsuki, K. Sugimoto, Y. Shimizu, H. Hirochika, and Y. Nagamura. 2011. RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39: D1141-D1148. Seok, H.Y., H.Y. Park, J.I. Park, Y.M. Lee, S.Y. Lee, G. An, and Y.H. Moon. 2010. Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem. Biophys. Res. Commun. 401: 598-604. Shitsukawa, N., C. Ikari, S. Shimada, S. Kitagawa, K. Sakamoto, H. Saito, H. Ryuto, N. Fukunishi, T. Abe, S. Takumi, S. Nasuda, and K. Murai. 2007. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82: 167-170. Sakamoto T., and M. Matsuoka. 2004 Generating high-yielding varieties by genetic manipulation of plant architecture. Curr. Opin. Biotechnol. 15: 144-147 Sun, T.P., and F. Gubler. 2004. Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol. 55: 197-223. Takahashi, Y., and K. Shimamoto. 2011. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genet. Syst. 86: 175-182. Tamaki, S., S. Matsuo, H.L. Wong, S. Yokoi, and K. Shimamoto. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036. Tanaka, N., H. Itoh, N. Sentoku, M. Kojima, H. Sakakibara, T. Izawa, J.I. Itoh, and Y. Nagato. 2011. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell 23: 2143-2154. Taoka, K.I., I. Ohki, H. Tsuji, K. Furuita, K. Hayashi, T. Yanase, M. Yamaguchi, C. Nakashima, Y.A. Purwestri, S. Tamaki, Y. Ogaki, C. Shimada, A. Nakagawa, C. Kojima, and K. Shimamoto. 2011. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476: 332-335. Tsuji, H., S. Tamaki, R. Komiya, and K. Shimamoto. 2008. Florigen and the photoperiodic control of flowering in rice. Rice 1: 25-35. Tsuji, H., H. Nakamura, K. Taoka, and K. Shimamoto. 2013. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 54: 385-397. Wilczek, A.M., L.T. Burghardt, A.R. Cobb, M.D. Cooper, S.M. Welch, and J. Schmitt. 2010. Genetic and physiological bases for phenological responses to current and predicted climates. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365: 3129-3147. Wu, C., C. You, C. Li, T. Long, G. Chen, M.E. Byrne, and Q. Zhang. 2008. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. USA 105: 12915-12920. Xue, W., Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, and Q. Zhang. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40: 761-767. Yamaguchi, T. 2006. Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell 18: 15-28. Yamaguchi, T. and H.Y. Hirano. 2006. Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6: 1923-1932. Yan, W.H., P. Wang, H.X. Chen, H.J. Zhou, Q.P. Li, C.R. Wang, Z.H. Ding, Y.S. Zhang, S.B. Yu, Y.Z. Xing, and Q.F. Zhang. 2010. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4: 319-330.
Chhun, T., K. Aya, K. Asano, E. Yamamoto, Y. Morinaka, M. Watanabe, H. Kitano, M. Ashikari, M. Matsuoka, and M. Ueguchi-Tanaka. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19: 3876-3888. Ding, Z., B. Wang, I. Moreno, N. Duplakova, S. Simon, N. Carraro, J. Reemmer, A. Pencik, X. Chen, R. Tejos, P. Skupa, S. Pollmann, J. Mravec, J. Petrasek, E. Zazimalova, D. Honys, J. Rolcik, A. Murphy, A. Orellana, M. Geisler, and J. Friml. 2012. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature communications 3: 941. Higginson, T., S.F. Li, and R.W. Parish. 2003. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35: 177-192. Hu, L., W. Liang, C. Yin, X. Cui, J. Zong, X. Wang, J. Hu, and D. Zhang. 2011. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23: 515-533. Lin, S.Y. 2009 Transgenic rice for expression of Trigonopsis variabilis D-amino acid oxidase. Docteral dissertation, National Chung Hsing University. Lin, S.Y., J.D. Wang, and J.H. Lin. 2009. Expression of Trigonopsis variabilis D-amino acid oxidase in transgenic rice for cephalosporin production. Bot. Stud. 50: 181-192. Nagpal, P., C.M. Ellis, H. Weber, S.E. Ploense, L.S. Barkawi, T.J. Guilfoyle, G. Hagen, J.M. Alonso, J.D. Cohen, E.E. Farmer, J.R. Ecker, and J.W. Reed. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4107-4118. Nonomura, K.I., K. Miyoshi, M. Eiguchi, T. Suzuki, A. Miyao, H. Hirochika, and N. Kurata. 2003. The MSP1 Gene Is Necessary to Restrict the Number of Cells Entering into Male and Female Sporogenesis and to Initiate Anther Wall Formation in Rice. Plant Cell 15: 1728-1739. Nonomura, K., M. Nakano, T. Fukuda, M. Eiguchi, A. Miyao, H. Hirochika, and N. Kurata. 2004. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16: 1008-1020. Nonomura, K., M. Nakano, M. Eiguchi, T. Suzuki, and N. Kurata. 2006. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J. Cell Sci. 119: 217-225. Sakata, T., T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga, N. Higashitani, Y. Miyazawa, H. Takahashi, M. Watanabe, and A. Higashitani. 2010. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 107: 8569-8574. Stintzi, A. and J. Browse. 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625-10630. Unger, E., A.M. Cigan, M. Trimnell, R.J. Xu, T. Kendall, B. Roth, and M. Albertsen. 2002. A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res. 11: 455-465. Wang, Z., Y. Zou, X. Li, Q. Zhang, L. Chen, H. Wu, D. Su, Y. Chen, J. Guo, D. Luo, Y. Long, Y. Zhong, and Y.G. Liu. 2006. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18: 676-687. Wilson, Z.A. and D.B. Zhang. 2009. From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60: 1479-1492. Yamaguchi, T., D.Y. Lee, A. Miyao, H. Hirochika, G. An, and H.Y. Hirano. 2006. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18: 15-28. Yen, C.J. 2011 Functional studies of rice Os02g0743200 gene by overexpression and siliencing. Master’s dissertation, National Chung Hsing University. Yuan, W., X. Li, Y. Chang, R. Wen, G. Chen, Q. Zhang, and C. Wu. 2009. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J. 59: 303-315. Zhang, Z.B., J. Zhu, J.F. Gao, C. Wang, H. Li, H.Q. Zhang, S. Zhang, D.M. Wang, Q.X. Wang, H. Huang, H.J. Xia, and Z.N. Yang. 2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 52: 528-538. Zhang, D., X. Luo, and L. Zhu. 2011. Cytological analysis and genetic control of rice anther development. J. Genet. Genomics 38: 379-390. Zhao, X., J. de Palma, R. Oane, R. Gamuyao, M. Luo, A. Chaudhury, P. Herve, Q. Xue, and J. Bennett. 2008. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 54: 375-387. Zhou, S., Y. Wang, W. Li, Z. Zhao, Y. Ren, S. Gu, Q. Lin, D. Wang, L. Jiang, N. Su, X. Zhang, L. Liu, Z. Cheng, C. Lei, J. Wang, X. Guo, F. Wu, H. Ikehashi, H. Wang, and J. Wan. 2011. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23: 111-129.
|