跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊達
研究生(外文):Jiun-Da Wang
論文名稱:異位大量表現OsMADS45轉殖株之分子調控與農藝性狀
論文名稱(外文):Molecular regulation and agronomic traits of ectopic expression of OsMADS45 in transgenic rice.
指導教授:林正宏林正宏引用關係陳良築
指導教授(外文):Jenq-Horng LinLiang-Jwu Chen
口試委員:林彥蓉古森本黃介辰
口試日期:2013-05-21
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:87
中文關鍵詞:水稻矮化提早開花
外文關鍵詞:OsMADS45earlier flowering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
OsMADS45是屬於MADS box中的E群基因,參與水稻稻穗發育過程中的調控。雖然Jeon等人於2000年的研究顯示,水稻中大量表現OsMADS45會導致其轉殖株提早開花並導致殖株矮化,但影響此現象的分子機制仍然不明瞭。因此我們構築以Ubi啟動子持續表現的OsMADS45,並轉殖到對光週期較不敏感的台農67號水稻品系,進而探討大量表現OsMADS45所造成的分子機轉。大量表現OsMADS45的台農67號水稻轉殖株,其開花時間明顯較野生型提早,所提早的開花時間是為Jeon轉殖株的8倍(提早40天抽穗),此外轉殖株外觀呈現矮化並有較低的穀粒產量和多數的空穗。大量表現OsMADS45並不會影響開花調控因子的日夜週期韻律,然而在轉殖株中,Heading Date 3a (Hd3a)以及RICE FlOWERING LOCUS T1 (RFT1)兩開花素均提早了20天開始表現。此外大量表現OsMADS45亦會影響Heading Date 1 (Hd1),促使其在幼苗期表現量降低而於開花後提高表現。再者OsMADS45轉殖株中,OsMADS14與OsMADS18兩基因的表現時間點皆與提早表現的Hd3a與RFT1相符。OsMADS45的大量表現並不會影響Hd1以及Early heading date 1 (Ehd1)上游基因的表現,例如OsGI、Ehd2/Osld1/RID1以及OsMADS50。本實驗結果證實大量表現OsMADS45時,會誘導Hd3a與RFT1基因提早表現,導致轉殖株發育初期即有Hd3a與RFT1的存在,並促使OsMADS14與OsMADS18提高表現,進而造成轉殖株提早進入生殖生長週期,導致提早開花。
The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and reduces plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown. We introduce an OsMADS45 overexpression construct Ubi:OsMADS45 into TNG67 plants (an Hd1 (Heading date 1) and Ehd1 (Early heading date 1) defective rice cultivar grown in Taiwan), and we analyzed the expression patterns of various floral regulators to understand the regulation pathways affected by OsMADS45 expression. The transgenic rice exhibit a heading date approximately 40 days earlier than that observed in TNG67 plants, and transgenic rice display small plant size and low grain yield. OsMADS45 overexpression did not alter the oscillating rhythm of the examined floral regulatory genes, Hd3a (Heading Date 3a) and RFT1 (RICE FLOWERING LOCUS T1), but advanced (by approximately 20 days) the up-regulation of the two florigens and suppressed the expression of Hd1 at the juvenile stage. The expression levels of OsMADS14 and OsMADS18, which are two well-known reproductive phase transition markers, were also increased at early developmental stages and are believed to be the major regulators responsible for early flowering in OsMADS45-overexpressing transgenic rice. OsMADS45 overexpression did not influence other floral regulator genes upstream of Hd1 and Ehd1, such as OsGI (OsGIGANTEA), Ehd2/Osld1/RID1 and OsMADS50. These results indicate that in transgenic rice, OsMADS45 overexpressing ectopically activates the upstream genes Hd3a and RFT1 at early developmental stage and up-regulates the expression of OsMADS14 and OsMADS18, which promote early flowering.
中文摘要 VII
ABSTRACT VIII
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
Flowering regulation in rice 3
Rice floral development genes 4
The function and interaction of OsMADS45 6
3. MATERIALS AND METHODS 8
Plant material and growth conditions 8
Ubi:OsMADS45 transgenic rice 8
Analyses of agronomic traits 9
Measurement of photosynthesis rate 9
Genomic DNA extraction and gene sequencing 9
Southern blot analysis 11
RNA isolation and semi-quantitative RT-PCR 12
4. RESULTS 14
Ectopic expression of OsMADS45 causes early flowering in TNG67 rice variety 14
Ectopic expression of OsMADS45 does not alter the oscillation rhythm of flowering time regulators 15
Expression analysis of various floral regulatory genes in 45OX transgenic rice 16
The expression of RFT1 is activated at early developmental stages in 45OX transgenic rice 16
The up-regulation of Hd3a and down-regulation of Hd1 at early development stages were observed in 45OX transgenic rice 17
The expression of OsMADS14 and OsMADS18 is up-regulated in 45OX transgenic rice 18
Genes Hd1 and Ehd1 are defective and an alternative spliced Hd1 mRNA was identified in TNG67 rice 20
5. DISCUSSION 22
6. LITERATURE CITED 29
7. TABLES AND FIGURES 37
8. SUPPLEMETARY DATA 44

APPENDIX: Analyses of PEPC:daao T-DNA insertion mutant. 49
1. INTRODUCTION 49
2. LITERATURE REVIEW 50
3. MATERIALS AND METHODS 53
Growth conditions 53
Southern blot analysis 53
Inverse PCR (iPCR) 53
The breeding of TK9/PEPC:daao hybrid Rice 54
The construction of Os02g0743200 antisense vector and Agrobacteria mediated gene transformation 54
4. RESULTS 55
The Os02g0743200 gene was the T-DNA inserted site in PEPC:daao transgenic rice 55
Os02g0743200 is similar to Sorghum bicolor SORBIDRAFT_04g028190 55
The uncorrelated phenotypes of PEPC:daao/TK9 hybridized rice 56
Construction of Os02g0743200 antisense plasmid 56
5. DISCUSSION 58
6. FUTURE WORKS 61
7. LITERATURE CITED 62
8. TABLES AND FIGURES 65
9. SUPPLEMENTAL DATA OF APPENDIX 76


Contents of tables

Table 1. Agronomic traits of TNG67 and Ubi:OsMADS45 transgenic rice plants. 37


APPENDIX

Table 1. The primers used in this test. 65
Table 2. The genotypes and agronomic traits of the F2 generation of PEPC:daao/TK9 hybridized rice 66


Contents of figures

Figure 1. The genome type and genetic expression of Ubi:OsMADS45 T3 transgenic rice. 38
Figure 2. The phenotypes of Ubi:OsMADS45 transgenic lines.. 39
Figure 3. The diurnal expression patterns of the floral regulatory genes of the Ehd2-OsMADS50-Ehd1-RFT1 and OsGI-Hd1-Hd3a flowering pathways. 40
Figure 4. Expression analysis of the floral regulatory genes Ehd2, OsMADS50, Ehd1, RFT1, OsGI, Hd1, Hd3a, OsMADS14 and OsMADS18 in TNG67 and Ubi:OsMADS45 transgenic rice at various growth stages 41
Figure 5. A schematic diagram showing the sequence variations and cDNA of Hd1 of TNG67 rice compare with Nipponbare plants 42
Figure 6. A model of the early flowering signal pathway in 45OX transgenic rice 43


APPENDIX

Figure 1. Southern blot of PEPC:daao transgenic rice 67
Figure 2. The amplification of flanking inserted sequence of PEPC:daao by iPCR analysis. 68
Figure 3. Os02g0743200 gene was inserted in PEPC:daao transgenic rice. 69
Figure 4. The RT-PCR analysis of TK9 and PEPC:daao inserted rice 70
Figure 5. The gene location and alignment of Os02g0743200 71
Figure 6. The genotypes (A) and phenotypes (B) of F2 generation of PEPC:daao/TK9 hybridized rice. 72
Figure 7. The construction of Os02g0743200 antisense plasmid 73
Figure 8. Calli and plants of antisense Os02g0743200 resulting from Agrobacterium mediated transformation 74
Figure 9. The comparison of TK9 (left) and Os02g0743200 overexpresssing (right) seeds. 75


Contents of supplemental data

Supplemental Table 1. The primer pairs used in this study. 44
Supplemental Figure 1. The flowering pathway. 48
Supplemental Figure 2. The transformation vector of the Ubi:OsMADS45 transgenic rice 46
Supplemental Figure 3. The genomic DNA sequence of the Hd1 gene of TNG67 rice 47
Supplemental Figure 4. A schematic diagram showing the location of sequence variation and the detailed cDNA sequences of Ehd1 of TNG67 rice 48



APPENDIX.

Supplemental Table 1. The agronomic traits of T2 transgenic rice 76
Supplemental Table 2. The material and programs of iPCR 77
Supplemental Table 3. Media used in this test. 79
Supplemental Figure 1. Morphological characteristics of TK9 rice (left) and PEPC:daao transgenic plant (right). 84
Supplemental Figure 2. The strategy of antisense gene construction. 85
Supplemental Figure 3. RT-PCR analysis of Os02g0743200 antisense (an-1, 2, 3 and 4) and overexpression (ov-2) lines 86
Supplemental Figure 4. The pollen viability test of TK9 and Os02g0743200 antisense lines (an-1, 2 and 3) 87
Arora, R., P. Agarwal, S. Ray, A.K. Singh, V.P. Singh, A.K. Tyagi, and S. Kapoor. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8: 242.
Bai, X., Q. Wang, and C. Chu. 2008. Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res. 17: 1035-1043.
Chen, C.S., R.K. Chen, H.H. Chin, and Y.R. Lin. 2010. Introgression of three heading date gene, hd1, Hd6, and ehd1, to Oryza sativa L. japonica cv. Koshihikari by marker-assisted selection. Crop, Environ. & Bioinformatics 7:1-20.
Chen, P.W., C.A. Lu, T.S. Yu, T.H. Tseng, C.S. Wang, and S.M. Yu. 2002. Rice α-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J. Biol. Chem. 277: 13641-13649.
Chen, P.J. 2008 Functional analysis of an abnormal growth mutant M00039314. Master’s dissertation, National Chung Hsing University.
Chien, H.T., R.K. Chen, A.L. Hour, C.S. Chen, and Y.R. Lin. 2011. The effects of Hd1, Hd6, and Ehd1 on rice heading date. Crop, Environ. & Bioinformatics 8:45-57.
Ciaffi, M., A.R. Paolacci, O.A. Tanzarella, and E. Porceddu. 2011. Molecular aspects of flower development in grasses. Sex. Plant Reprod. 24:247-282.
Cui, R.F., J.K. Han, S.H. Zhao, K.M. Su, F. Wu, X.Q. Du, Q.J. Xu, K. Chong, G. Theißen, and Z. Meng. 2010. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J. 61: 767-781.
Doi, K., T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, and A. Yoshimura. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18: 926-936.
Dreni, L., S. Jacchia, F. Fornara, M. Fornari, P.B.F. Ouwerkerk, G. An, L. Colombo, and M.M. Kater. 2007. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J. 52: 690-699.
Duan, Y., Z. Xing, Z. Diao, W. Xu, S. Li, X. Du, G. Wu, C. Wang, T. Lan, Z. Meng, H. Liu, F. Wang, W. Wu, and Y. Xue. 2012. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol. Biol. 80: 429-442.
Endo-Higashi, N., and T. Izawa. 2011. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol. 52: 1083-1094.
Favaro, R., R.G.H. Immink, V. Ferioli, B. Bernasconi, M. Byzova, G.C. Angenent, M. Kater, and L. Colombo. 2002. Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol. Genet. Genomics 268: 152-159.
Fornara, F., L. Parˇenicova′, G. Falasca, N. Pelucchi, S. Masiero, S. Ciannamea, Z. Lopez-Dee, M.M. Altamura, L. Colombo, and M.M. Kater. 2004. Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS-box Genes. Plant Physiol. 135: 2207-2219.
Gao, H., X.M. Zheng, G. Fei, J. Chen, M. Jin, Y. Ren, W. Wu, K. Zhou, P. Sheng, F. Zhou, L. Jiang, J. Wang, X. Zhang, X. Guo, J.L. Wang, Z. Cheng, C. Wu, H. Wang, and J.M. Wan. 2013. Ehd4 encodes a novel and oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet. 9: e1003281.
Greco, R., L. Stagi, L. Colombo, G.C. Angenent, M. Sari-Gorla, and M.E. Pè. 1997. MADS-box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253: 615-623.
Greenup, A., W.J. Peacock, E.S. Dennis, and B. Trevaskis. 2009. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103: 1165-1172.
Hayama, R., and G. Coupland. 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135: 677-684.
Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722.
Honma, T., and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Hsu, H.F., C.H. Huang, L.T. Chou, and C.H. Yang. 2003. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794.
Izawa, T. 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58: 3091-3097.
Jeon, J.S., S. Lee, K.H. Jung, W.S. Yang, G.H. Yi, B.G. Oh, and G. An. 2000a. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6: 581-592.
Jeon, J.S., S. Jang, S. Lee, J. Nam, C. Kim, S.H. Lee, Y.Y. Chung, S.R. Kim, Y.H. Lee, Y.G. Cho, and G. An. 2000b. leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell 12: 871-884.
Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25-34.
Kim, S.K., C.H. Yun, J.H. Lee, Y.H. Jang, H.Y. Park, and J.K. Kim. 2008. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228: 355-365.
Kim, S.L., S. Lee, H.J. Kim, H.G. Nam, and G. An. 2007. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol. 145: 1484-1494.
Kobayashi, K., N. Yasuno, Y. Sato, M. Yoda, R. Yamazaki, M. Kimizu, H. Yoshida, Y. Nagamura, and J. Kyozuka. 2012. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-Like MADS-box genes and PAP2, a SEPALLATA MADS-box gene. Plant Cell 24: 1848–1859.
Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. 2002. Hd3a, a rice ortholog of the Arabidopsis FT Gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43: 1096-1105.
Komiya, R., S. Yokoi, and K. Shimamoto. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443-3450.
Komiya, R., A. Ikegami, S. Tamaki, S. Yokoi, and K. Shimamoto. 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135: 767-774.
Koo, S.C., O. Bracko, M.S. Park, R. Schwab, H.J. Chun, K.M. Park, J.S. Seo, V. Grbic, S. Balasubramanian, M. Schmid, F. Godard, D.J. Yun, S.Y. Lee, M.J. Cho, D. Weigel, and M.C. Kim. 2010. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant J. 62: 807-816.
Koornneef, M., C. Alonso-Blanco, A.J.M. Peeters, and W. Soppe. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370.
Lee, S., J. Kim, J.J. Han, M.J. Han, and G. An. 2004. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 38: 754-764.
Lim, J., Y.H. Moon, G. An, and S.K. Jang. 2000. Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44: 513-527.
Lin, S.Y., J.D. Wang, and J.H. Lin. 2009. Expression of Trigonopsis variabilis D-amino acid oxidase in transgenic rice for cephalosporin production. Bot. Stud. 50: 181-192.
Lin, Y.R., S.C. Wu, S.E. Chen, T.H. Tseng, C.S. Chen, S.C. Kuo, H.P. Wu, and Y.I.C. Hsing. 2011. Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot. Stud. 52: 1-14.
Lopez-Dee, Z.P., P. Wittich, M. Enrico Pè, D. Rigola, I. Del Buono, M.S. Gorla, M.M. Kater, and L. Colombo. 1999. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25: 237-244.
Masiero, S., C. Imbriano, F. Ravasio, R. Favaro, N. Pelucchi, M.S. Gorla, R. Mantovani, L. Colombo, and M.M. Kater. 2002. Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J. Biol. Chem. 277: 26429-26435.
Matsubara, K., U. Yamanouchi, Z.X. Wang, Y. Minobe, T. Izawa, and M. Yano. 2008. Ehd2, a rice ortholog of the maize INDETERMINATE1 Gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148: 1425-1435.
Moon, Y.H., J.Y. Jung, H.G. Kang, and G. An. 1999a. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167-177.
Moon, Y.H., H.G. Kang, J.Y. Jung, J.S. Jeon, S.K. Sung, and G. An. 1999b. Determination of the Motif Responsible for Interaction between the Rice APETALA1 AGAMOUS-LIKE9 Family Proteins Using a Yeast Two-Hybrid System. Plant Physiol. 120: 1193–1203.
Osugi, A., H. Itoh, K. Ikeda-Kawakatsu, M. Takano, and T. Izawa. 2011. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol. 157: 1128-1137.
Park, S.J., S.L. Kim, S. Lee, B.I. Je, H.L. Piao, S.H. Park, C.M. Kim, C.H. Ryu, S.H. Park, Y.h. Xuan, J. Colasanti, G. An, and C.d. Han. 2008. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56: 1018-1029.
Pelaz, S., G.S. Ditta, E. Baumann, E. Wisman, and M.F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Ryu, C.H., S. Lee, L.H. Cho, S.L. Kim, Y.S. Lee, S.C. Choi, H.J. Jeong, J. Yi, S.J. Park, C.D. Han, and G. An. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ. 32: 1412-1427.
Sato, Y., B.A. Antonio, N. Namiki, H. Takehisa, H. Minami, K. Kamatsuki, K. Sugimoto, Y. Shimizu, H. Hirochika, and Y. Nagamura. 2011. RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39: D1141-D1148.
Seok, H.Y., H.Y. Park, J.I. Park, Y.M. Lee, S.Y. Lee, G. An, and Y.H. Moon. 2010. Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem. Biophys. Res. Commun. 401: 598-604.
Shitsukawa, N., C. Ikari, S. Shimada, S. Kitagawa, K. Sakamoto, H. Saito, H. Ryuto, N. Fukunishi, T. Abe, S. Takumi, S. Nasuda, and K. Murai. 2007. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82: 167-170.
Sakamoto T., and M. Matsuoka. 2004 Generating high-yielding varieties by genetic manipulation of plant architecture. Curr. Opin. Biotechnol. 15: 144-147
Sun, T.P., and F. Gubler. 2004. Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol. 55: 197-223.
Takahashi, Y., and K. Shimamoto. 2011. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genet. Syst. 86: 175-182.
Tamaki, S., S. Matsuo, H.L. Wong, S. Yokoi, and K. Shimamoto. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036.
Tanaka, N., H. Itoh, N. Sentoku, M. Kojima, H. Sakakibara, T. Izawa, J.I. Itoh, and Y. Nagato. 2011. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell 23: 2143-2154.
Taoka, K.I., I. Ohki, H. Tsuji, K. Furuita, K. Hayashi, T. Yanase, M. Yamaguchi, C. Nakashima, Y.A. Purwestri, S. Tamaki, Y. Ogaki, C. Shimada, A. Nakagawa, C. Kojima, and K. Shimamoto. 2011. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476: 332-335.
Tsuji, H., S. Tamaki, R. Komiya, and K. Shimamoto. 2008. Florigen and the photoperiodic control of flowering in rice. Rice 1: 25-35.
Tsuji, H., H. Nakamura, K. Taoka, and K. Shimamoto. 2013. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 54: 385-397.
Wilczek, A.M., L.T. Burghardt, A.R. Cobb, M.D. Cooper, S.M. Welch, and J. Schmitt. 2010. Genetic and physiological bases for phenological responses to current and predicted climates. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365: 3129-3147.
Wu, C., C. You, C. Li, T. Long, G. Chen, M.E. Byrne, and Q. Zhang. 2008. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. USA 105: 12915-12920.
Xue, W., Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, and Q. Zhang. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40: 761-767.
Yamaguchi, T. 2006. Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell 18: 15-28.
Yamaguchi, T. and H.Y. Hirano. 2006. Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6: 1923-1932.
Yan, W.H., P. Wang, H.X. Chen, H.J. Zhou, Q.P. Li, C.R. Wang, Z.H. Ding, Y.S. Zhang, S.B. Yu, Y.Z. Xing, and Q.F. Zhang. 2010. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4: 319-330.

Chhun, T., K. Aya, K. Asano, E. Yamamoto, Y. Morinaka, M. Watanabe, H. Kitano, M. Ashikari, M. Matsuoka, and M. Ueguchi-Tanaka. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19: 3876-3888.
Ding, Z., B. Wang, I. Moreno, N. Duplakova, S. Simon, N. Carraro, J. Reemmer, A. Pencik, X. Chen, R. Tejos, P. Skupa, S. Pollmann, J. Mravec, J. Petrasek, E. Zazimalova, D. Honys, J. Rolcik, A. Murphy, A. Orellana, M. Geisler, and J. Friml. 2012. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature communications 3: 941.
Higginson, T., S.F. Li, and R.W. Parish. 2003. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35: 177-192.
Hu, L., W. Liang, C. Yin, X. Cui, J. Zong, X. Wang, J. Hu, and D. Zhang. 2011. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23: 515-533.
Lin, S.Y. 2009 Transgenic rice for expression of Trigonopsis variabilis D-amino acid oxidase. Docteral dissertation, National Chung Hsing University.
Lin, S.Y., J.D. Wang, and J.H. Lin. 2009. Expression of Trigonopsis variabilis D-amino acid oxidase in transgenic rice for cephalosporin production. Bot. Stud. 50: 181-192.
Nagpal, P., C.M. Ellis, H. Weber, S.E. Ploense, L.S. Barkawi, T.J. Guilfoyle, G. Hagen, J.M. Alonso, J.D. Cohen, E.E. Farmer, J.R. Ecker, and J.W. Reed. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4107-4118.
Nonomura, K.I., K. Miyoshi, M. Eiguchi, T. Suzuki, A. Miyao, H. Hirochika, and N. Kurata. 2003. The MSP1 Gene Is Necessary to Restrict the Number of Cells Entering into Male and Female Sporogenesis and to Initiate Anther Wall Formation in Rice. Plant Cell 15: 1728-1739.
Nonomura, K., M. Nakano, T. Fukuda, M. Eiguchi, A. Miyao, H. Hirochika, and N. Kurata. 2004. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16: 1008-1020.
Nonomura, K., M. Nakano, M. Eiguchi, T. Suzuki, and N. Kurata. 2006. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J. Cell Sci. 119: 217-225.
Sakata, T., T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga, N. Higashitani, Y. Miyazawa, H. Takahashi, M. Watanabe, and A. Higashitani. 2010. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 107: 8569-8574.
Stintzi, A. and J. Browse. 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625-10630.
Unger, E., A.M. Cigan, M. Trimnell, R.J. Xu, T. Kendall, B. Roth, and M. Albertsen. 2002. A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res. 11: 455-465.
Wang, Z., Y. Zou, X. Li, Q. Zhang, L. Chen, H. Wu, D. Su, Y. Chen, J. Guo, D. Luo, Y. Long, Y. Zhong, and Y.G. Liu. 2006. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18: 676-687.
Wilson, Z.A. and D.B. Zhang. 2009. From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60: 1479-1492.
Yamaguchi, T., D.Y. Lee, A. Miyao, H. Hirochika, G. An, and H.Y. Hirano. 2006. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18: 15-28.
Yen, C.J. 2011 Functional studies of rice Os02g0743200 gene by overexpression and siliencing. Master’s dissertation, National Chung Hsing University.
Yuan, W., X. Li, Y. Chang, R. Wen, G. Chen, Q. Zhang, and C. Wu. 2009. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J. 59: 303-315.
Zhang, Z.B., J. Zhu, J.F. Gao, C. Wang, H. Li, H.Q. Zhang, S. Zhang, D.M. Wang, Q.X. Wang, H. Huang, H.J. Xia, and Z.N. Yang. 2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 52: 528-538.
Zhang, D., X. Luo, and L. Zhu. 2011. Cytological analysis and genetic control of rice anther development. J. Genet. Genomics 38: 379-390.
Zhao, X., J. de Palma, R. Oane, R. Gamuyao, M. Luo, A. Chaudhury, P. Herve, Q. Xue, and J. Bennett. 2008. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 54: 375-387.
Zhou, S., Y. Wang, W. Li, Z. Zhao, Y. Ren, S. Gu, Q. Lin, D. Wang, L. Jiang, N. Su, X. Zhang, L. Liu, Z. Cheng, C. Lei, J. Wang, X. Guo, F. Wu, H. Ikehashi, H. Wang, and J. Wan. 2011. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23: 111-129. 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top