|
[1]施敏原著,黃調元譯, “半導體元件物理與製程技術 (第二版),” 國立交通大學出版社, 2002. [2]Michael Quirk與Julian Serda著, 劉文超與許渭州校閱, 羅文雄、蔡榮輝與鄭岫盈譯, “半導體製程技術,” 台灣培生教育出版股份有限公司, 2004. [3]S. Deleonibus, “Physical and technological lomitations of NanoCMOS device to the end of the roadmap and beyond,” Eur. Phys. J. Appl. Phys. , Jan. 2007, pp. 197-214 [4]Leland Chang, Yang-Kyu Choi, Jakub Kedzierski, Nick Lindert, Peiqi Xuan, Jeffery Bokor, Chenming Hu, and Tsu-Jae King, “Moore’s Law Lives On,” IEEE CIRCUITS & DEVICE, Jan. 2003, pp. 35-42. [5]P.M. Solomon, K.W. Guarini, Y. Zhang, K.K. Chan, E.C. Jones, G.M. Cohen, A.Krasnoperova, Maria Ronay, O. Dokumaci, H.J. Hovel, J.J. Bucchignano, C. Cabral Jr., C. Lavoie, V. Ku, D.C. Boyd, K.S. Petrarca, J.H. Yoon, I.V. Babich, J. Treichler, P.M. Kozlowski, J.S. Newbury, C.P. D’Emic, R.M. Sicina, J. Benedict, and H.-S.P. Wong, “Two Gate Are Better Than One,” IEEE CIRCUITS & DEVICE, Jan. 2003, pp. 48-62. [6]Taurus Process & Device User Manual Version X, Feb. 2005. [7]D. J. Frank, S. E. Laux and M. V. Fischetti, “Monte Carlo Simulation of a 30nm Dual-Gate MOSFET: How Short Can Si Go?,” IEEE IEDM, Dec. 1992, pp. 553-556. [8]Xiaoping Liang, and Yuan Taur, “A 2-D Analytical Solution for SCEs in DG MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 8, Aug. 2004, pp. 1385-1391. [9]Leland Chang, Stephen Tang, Tsu-Jae King, Jeffrey Bokor and Chenming Hu, “Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs.” IEEE IEDM, Dec. 2000, pp. 719-722. [10]Yuan Taur, “An Analytical Solution to a Double-Gate MOSFET with Undoped Body,” IEEE CIRCUIT & DEVICE, vol. 21, no. 5, May. 2000, pp. 245-247. [11]Huaxin Lu and Yuan Taur, “An Analytical Potential Model for Symmetric and Asymmetric DG MOSFET,” IEEE Trans. Electron Devices, vol. 53, no. 5, May. 2006, pp. 1161-1168. [12]Jerry G. Fossum, Lixin Ge, and Meng-Hsueh Chiang, “Speed Superiority of Scaled Double-Gate CMOS,” IEEE Trans. Electron Devices, vol. 49, no. 5, May. 2002, pp. 808-811. [13]Yuan Taur, “Analytical Solutions of Charge and Capacitance in Symmetric and Asymmetric Double-Gate MOSFETs,” IEEE Trans. Electron Devices, vol. 48, no. 12, Dec. 2001, pp. 2861-2869. [14]Gianluca Fiori and Giuseppe Iannaccone, “Three-Diamensional Simulation of One-Dimensional Transport in Silicon Nanowire Transisors,” IEEE Trans. Electron Devices, vol. 6, no. 5, Sept. 2007, pp. 524-529. [15]M. Bescond, K. Nehari, J.L. Autran, N. Cavassilas, D. Munteanu, and M. Lannoo, “3D Quantum Modeling and Simulation of Multiple-Gate Nanowire MOSFETs,” IEEE IEDM, Dec. 2004, pp. 617-620. [16]E. Gnani, S. Reggiani, M. Rudan, G. Baccarani, “A Quantum-Mechanical Analysis of the Electrostatics in Multi-Gate FETs,” IEEE SISPAD, Sept. 2005, pp. 291-294. [17]Ramesh Venugopal, Zhibin Ren, and Mark S. Lundstrom, “Simulating Quantum Transport in Nanoscale MOSFETs: Ballistic Hole Tansport, Subband Engineering and Boundary Conditions,” IEEE Trans. Electron Devices, vol. 2, no. 3, Sept. 2003, pp. 135-143. [18]G. Paasch and H. Übensee, “A Modified Local Density Approximation: Electron Density in Inversion Layers,” Phys. Stat., May. 1982, pp. 165-178 [19]International Technology Roadmap for Semiconductors, 2006. Online: http://public.itrs.net/. [20]Ji-Woon Yang and Jerry G. Fossum, “On the Feasibility of Nanoscale Triple-Gate CMOS Transistors,” IEEE Trans. Electron Devices, vol. 52, no. 6, June. 2005, pp. 1159-1164. [21]Wei Bian, Jin He, Yu Chen, Yue Fu, Rui Zhang, Lining Zhamg, and Mansun Chan, “Complicated Subthreshold Behavior of Undoped Cylindrical Surrounding-Gate MOSFETs,” IEEE EDSSC, Dec. 2007, pp. 589-592. [22]Hamdy Abd El Hamid, Benjamin Iñíguez, and Jaume Roig Guitart, “Analytical Model of the Threshold Voltage and Subthreshold Swing of Undoped Cylindrical Gate-All-Around-Based MOSFETs,” IEEE Trans. Electron Devices, vol. 54, no. 3, Mar. 2007, pp. 572-578. [23]Andreas Wettstein, Andreas Schenk, and Wolfgang Fichtner, “Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids,” IEEE Trans. Electron Devices, vol. 48, no. 2, Feb. 2001, pp. 279-284. [24]Fu-Liang Yang, Di-Hong Lee, Hou-Yu Chen, Chang-Yun Chang, Sheng-Da Liu, Cheng-Chuan Huang, Tang-Xuan Chung, Hung-Wei Chen, Chien-Chao Huang, Yi-Hsuan Liu, Chung-Chen Wu, Chi-Chun Chen, Shih-Chang Chen, Ying-Tsung Chen, Ying-Ho Chen, Chih-Jian Chen, Bor-Wen Chan, Peng-Fu Hsu, Jyu-Horng Shieh, Han-Jan Tao, Yee-Chia Yeo, Yiming Li, Jam-Wem Lee, Pu Chen, Mong-Song Liang, and Chenming Hu., “5nm-Gate Nanowire FinFET,” IEEE VLSI Digest of Technical Papers, June 2004, pp. 196-197. [25]Bipul C. Paul, Shinobu Fujita, and Masaki Qkajima, “Impact of a Process Variation on Nanowire and Nanotube Device Performance,” IEEE Trans. Electron Devices, vol. 54, no. 9, Sept. 2007, pp. 2369-2376. [26]Yiming Li, Hung-Mu Chou, and Jam-Wem Lee “Investigation of Electrical Characteristics on Surrounding-Gate and Omega-Shaped-Gate Nanowire FinFETs,” IEEE Trans. Electron Devices, vol. 4, no. 5, Sept. 2005, pp. 510-516. [27]M.H. Na, E.J. Nowak, W. Haensch, and J. Cai, “The Effective Drive Current in CMOS Inverters,” IEEE IEDM, Dec. 2002, pp. 121-124. [28]Leland Chang, MeiKei Ieong, and Min Yang“CMOS Circuit Performance Enhancement by Surface Orientation Optimization,” IEEE Transactions on Electron Devices, Vol. 51, NO. 10, Oct. 2004, pp. 1621-1627. [29]F. Schäfler, “High-mobility Si and Ge structures,” Semiconductor Science and Technology, vol. 12, Dec. 1997, pp. 1515-1549. [30]Masaharu kobayashi and Toshiro Hiramoto, “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys. 103, 053709 (2008). [31]Yuan Taur and Tak H. Ning, 1998, Fundamentals of Mooern VLSI Devices, New York.
|