跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程政憲
研究生(外文):Cheng-Hsien Cheng
論文名稱:矽化鍺應用於P型通道之SONOS非揮發性記憶體與捕捉層電荷分佈之探討
論文名稱(外文):Application of SiGe on P-Channel SONOS-type Nonvolatile Memory and Study of Charge Distribution in Charge Trapping Layer
指導教授:張廖貴術
指導教授(外文):Kuei-Shu Chang-Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:矽化鍺電荷分佈
外文關鍵詞:P-channel SONOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文的重點是以矽化鍺改變P-channel SONOS的材料與結構,以提升P-channel SONOS的工作效能。在以矽化鍺為通道的部份,主要是將發表於P型浮動閘極快閃記憶體的研究應用於P-channel SONOS,觀察P-channel SONOS在以矽化鍺為表面通道時,調變鍺的含量,其寫入速度與純矽基底的P-channel SONOS之間的差異。另外,由於二氧化矽與矽化鍺之間介面特性不佳,因此引入單晶矽層(Si-cap)改善其介面特性,我們亦觀察引入單晶矽層後P-channel SONOS的工作效能。
除了使用矽化鍺通道來改善寫入速度之外,亦提出矽化鍺汲極的構想應用於P-channel SONOS。我們提出矽化鍺汲極擴充P-channel SONOS以更簡單的製程方式來改善寫入速度,亦提出不同結構的掩埋通道,包括H型及U型,H型掩埋通道乃是期望其能夠改善讀取效能,提升讀取電流以達到省電的效能,而U型掩埋通道除了擁有H型掩埋通道優點之外,其在製程的方式則較為簡單。
最後,我們亦對P-channel SONOS捕捉層內的電子分佈情形,以不同的偏壓條件以及不同的元件尺寸作探討。提出汲極偏壓較大的反向局部化(Reverse Localization)寫入方式,用以加大雙位元操作時所需的臨界電壓窗口,使其執行雙位元操作的效果更佳。
第一章 序論
1.1 前言………………………………………………………………1
1.2 快閃記憶體面臨問題……………………………………………2
1.3 SONOS快閃記憶體的優點及面臨的問題…………………………3
1.4 文獻回顧…………………………………………………………5
1.4.1 雙位元快閃記憶體(2-Bit)……………………………………5
1.4.2 P通道SONOS快閃記憶體………………………………………6
1.4.3 矽化鍺通道快閃記憶體………………………………………7
1.4.4 矽化鍺源/汲極異質介面電晶體……………………………8
1.5 論文架構…………………………………………………………9
第二章 SONOS基礎理論與基本模擬介紹
2.1 SONOS快閃記憶體元件操作原理………………………………21
2.1.1通道熱電子注入寫入…………………………………………21
2.1.2 FN穿隧寫入……………………………………………………22
2.1.3 FN穿隧抹除……………………………………………………23
2.1.4 帶對帶穿隧引發熱載子寫入(BBHE ) ………………………23
2.2 SONOS快閃記憶體元件特性……………………………………24
2.2.1 耐力……………………………………………………………24
2.2.2 干擾……………………………………………………………26
2.2.3 電荷保持………………………………………………………27
2.3 模擬軟體介紹……………………………………………………28
2.4 P-channel SONOS之基本模擬…………………………………30
2.4.1模擬元件參數及物理模型……………………………………30
2.4.2 P-channel SONOS模擬結果……………………………………31
第三章 矽化鍺通道應用於P-channel SONOS
3.1矽化鍺合金表面通道之應用………………………………………44
3.1.1 BBHE寫入………………………………………………………45
3.1.2 抹除現象………………………………………………………46
3.1.3 干擾……………………………………………………………47
3.2 不同單晶矽層(Si-cap)厚度之應用……………………………48
3.2.1 BBHE寫入………………………………………………………49
3.2.2 抹除現象………………………………………………………50
3.2.3 干擾……………………………………………………………50
3.3 矽化鍺通道之厚度與位置探討…………………………………51
3.3.1矽化鍺表面通道厚度之探討……………………………………52
3.3.2矽化鍺掩埋通道位置之探討……………………………………53
3.4 結論………………………………………………………………55
第四章 矽化鍺汲極應用於P-channel SONOS
4.1 矽化鍺汲極擴充P-channel SONOS (SDE-P-SONOS)…………67
4.1.1結構及原理介紹………………………………………………68
4.1.2工作效能………………………………………………………69
4.2 H型矽化鍺掩埋通道P-channel SONOS (H-P-SONOS)………70
4.2.1 結構及原理介紹……………………………………………70
4.2.2 工作效能……………………………………………………71
4.3 U型矽化鍺掩埋通道P-channel SONOS (U-P-SONOS)………73
4.3.1 結構及原理介紹……………………………………………73
4.3.2 工作效能……………………………………………………74
4.4 結論………………………………………………………………75
第五章 矽化鍺捕捉層電荷分佈情況之探討
5.1 N-channel SONOS電荷分佈……………………………………85
5.2 P-channel SONOS電荷分佈……………………………………86
5.2.1 偏壓與捕捉層電荷分佈之關係………………………………87
5.2.2元件尺寸與捕捉層電荷分佈之關係…………………………90
5.3 結論………………………………………………………………92
第六章 結論與未來建議
6.1 結論……………………………………………………………100
6.2未來建議…………………………………………………………101
參考資料……………………………………………………………102
參考資料
[1] Min She, “Semiconductor Flash Memory Scaling”, 2003
[2] Jing Hao Chen, et al., “Nonvolatile Flash Memory Device Using Ge Nanocrystals Embedded in HfAlO High-K Tunneling and Control Oxide: Device Fabrication and Electrical Performance”, IEEE Transactions on Electron Devices, Vol.51, No.11, 2004
[3] Min She, et al., ”Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance”, IEEE Transactions on Electron Devices, Vol.50, No.9, 2003.
[4] Dong-Won Kim, et al., “Memory characterization of SiGe quantum dot flash memorieswith HfO2 and SiO2 tunneling dielectrics”, IEEE Transactions on Electron Devices, Vol.50, No.9, 2003.
[5] Marvin H. White, et al., ”On the go with SONOS”, IEEE Circuit & Device, 2000.
[6] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.20, No.2, 1997.
[7] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5, P5-2383 5-2390, 2001
[8] W. J. Tsai, et al., “Data retention behavior of a SONOS type two-bit storage flash memory cell”, IEEE International Electron Devices Meeting, 2001
[9] K. Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices , Vol.42, No.1, 1995
[10] 薛富元, “由模擬來探討Floating Gate Memory及SONOS元件微小化之極限”, 國立清華大學電子工程研究所, P6, 2004
[11] Jan Van Houdt, et al., “High-k materials for nonvolatile memory applications,” International Reliability Physics Symposium, 2005.
[12] T. Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003.
[13] Chih-Chieh Yeh, et al., “A Novel PHINES Flash Memory Cell with Low Power Program/Erase, Small Pitch, Two-Bits-Per-Cell for Data Storage Applications” IEEE Transactions on Electron Devices, Vol. 52, pp. 541-546, 2005
[14] B. Eitan, et al., “NROM: A novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Letters, No.6, pp. 543-545, 2000.
[15] T. Ohnakado, et al., “Device characteristics of 0.35 μm p-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming,” IEEE Transactions on Electron Devices, No.12, pp.1866-1871, 1999.
[16] Hang-Ting Lue, et al., “A Novel P-Channel Nitride-Trapping Nonvolatile Memory Device with Excellent Reliability Properties,” IEEE Electron Device Letters, VOL. 26, No.8, 2005.
[17] D. L. Kencke, et al., “Enhanced Secondary Electron Injection in Novel SiGe Flash Memory Devices,” IEEE International Electron Device Meeting, pp. 105-108, 2000.
[18] L. M. Weltzer et al., “Enhanced CHISEL Programming in Flash Memory Devices with SiGe Buried Layer,” Non-Volatile Memory Technology Symposium, pp.31-33, 2004
[19] Chi-Chao Wang, et al.,” Enhanced Band-to-Band-Tunneling-
Induced Hot-Electron Injection in p-Channel Flash by Band-gap Offset Modification,” IEEE Electron Device Letters, VOL. 27, No. 9, 2006
[20] S. A. Hareland, et al., “New structural approach for reducing punchthrough current in deep submicrometer MOSFETs and extending MOSFET scaling,” IEEE Electronic Letters, Vol. 29, No. 21, pp. 1894-1896, 1993
[21] S. A. Hareland, et al., “Analysis of a Heterojunction MOSFET Structure for Deep-Submicron Scaling,” Proc. of the 21st International Symposium on Compound Semiconductors, pp. 18-22,1994.
[22] P. Verheyen, et al., “A 70nm Vertical Si/Si1-XGex Heterojunction pMOSFET with Reduced DIBL Sensitivity for VLSI Applications,” VLSI Symposium, pp. 19, 1999.
[23] N. Yasutake, et al.,” A High Performance pMOSFET with Two-step
Recessed SiGe-S/D Structure for 32nm node and Beyond” IEEE
Solid-State Device Research Conference, pp.77-80 , 2006
[24] Q. Ouyang, et al.,” Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET With Enhanced Device Performance and Scalability,” IEEE Simulation of Semiconductor Processes and Devices, pp. 151-154, 2000.
[25] S. S. Chung, et al., “N-Channel versus P-Channel Flash EEPROM Which one has better reliabilities”, IEEE Annual International Reliability Physics Symposium, pp. 67-72, 2001.
[26] T. Ohnakado, et al., “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell” IEEE International Electron Device Meeting, pp.279-282 , 1995.
[27] Kailash Gopalakrishnan, et al., “Novel Very High IE Structures Based on the Directed BBHE Mechanism for Ultra low-Power Flash Memories,” IEEE Electron Device Letters, Vol.26, pp. 212-215, 2005
[28] Verma, et al., ”Reliability Performance of ETOX Based Flash
Memory”, International Reliability Physics Symposium, pp.158, 1998.
[29] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory
Cells”, IEEE Electron Device Letters, Vol.10, No.3, P.117, 1989.
[30] Adam Brand, et al., ”Novel Read Disturb Failure Mechanism
Induced by Flash Cycling”, International Reliability Physics Symposium,
pp.127, 1993.
[31] Robert J. P. Lander, et al., “High Hole Mobilities in Fully-Strained Si1-xGex Layers (0:3 < x < 0:4) and their Significance for SiGe pMOSFET Performance” IEEE Transactions on Electron Devices, Vol. 48, pp. 1826-1832, 2001.
[32] Hang-Ting Lue, et al., “Studies of the Reverse Read Method and Second-Bit Effect of 2-Bit/Cell Nitride-Trapping Device by Quasi-Two-Dimensional Model” IEEE Transactions on Electron Devices, Vol. 53, pp. 119-125, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top