參考文獻
中文部分
江存卿(2006)。以貝氏網路為基礎之能力指標測驗編製及補救教學動畫製作-以三年級數學領域之「整數」相關指標為例。未出版之碩士論文,私立亞洲大學資訊工程研究所,台中市。許雅菱(2005)。貝氏網路在教育測驗分析上的應用。未出版之碩士論文,國立台中師範學院測驗統計研究所,台中市。
劉湘川彙編(2004b)。「貝氏統計理論」教學講義。未出版手稿。
蘇俊和(2004)。貝氏網路的建構與學習機制之研究-以航太產業績效管理為例。未出版之碩士論文,私立東海大學工業工程學研究所,台中市。外文部分
Alpaydin, E., & Kaynak, C. (1998). Cascading classifiers. KYBERNETIKA, 34(4), 369–374.
Bruzzone, L., & Cossu, R. (2002). A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Transactions on Geoscience and Remote Sensing, 40(9), 1984–1996.
Dasarathy, B. V., & Sheela, B. V. (1978). A composite classifier system design: concepts and methodology. Proceedings of IEEE, 67, 708–713.
Day, W. H. E. (1988). Consensus methods as tools for data analysis. In H. H. Bock (ed.).
Classification and related methods for data analysis, elsevier science publishers B.V. (pp. 317–324). North Holland.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In J. Kittler & F. Roli (Ed.). First international workshop on multiple classifier systems, lecture notes in computer science (pp. 1-15). New York: Springer Verlag.
Egmont-Petersen, M., Dassen, W. R. M., & Reiber, J. H. C. (1999). Sequential selection of discrete features for neural networks – A Bayesian approach to building a cascade. Pattern Recognition Letters, 20(11–13), 1439–1448.
Ho, T. K. (2002). Multiple classifier combination: Lessons and the next steps. In A. Kandel & H. Bunke (Eds.). Hybrid methods in pattern recognition (pp. 171–198). World Scientific Publishing.
Jensen, F. V. (1996). An introduction to Bayesian networks. New York: Springer.
Jensen, F. V. (2001). Bayesian networks and decision graphs. New York: Springer.
Kang, H. J., Kim, K., & Kim, J. H. (1997). A framework for probabilistic combination of multiple classifiers at an abstract level. Engineering Applications of Artificial Intelligence, 10(4), 379–385.
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2), 157-224
Lam, L., & Suen, C. Y. (1997). Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics, 27(5), 553–568.
Lee, J. (2003). Diagnosis of bugs in multi-column subtraction using Bayesian networks. Unpublished doctoral dissertation, Columbia University, U.S.A.
Ludmila I. K. (2003). Combining Pattern Classifiers methods and algorithms. New Jersey:
John Wiley & Sons, Inc. , Hoboken.
Mislevy, R. J. (1995). Probability-based Inference in Cognitive Diagnosis. In P. Nichols, S. Chipman & R. Brennan. (Eds.). Cognitively Diagnostic Assessment. Hillsdale, NJ: Lawrence Erlbaum Associates
Mislevy, R.J., Almond, R.G., Yan, D., & Steinberg, L.S. (1999). Bayes nets in educational assessment: Where do the numbers come from? In K. B. Laskey & H. Prade (Eds.). Proceedings of the fifteenth conference on uncertainty in Artificial Intelligence (pp. 437-446). San Francisco: Morgan Kaufmann Publishers, Inc.
Mislevy, R. J., Almond, R. G. & Lukas, J. F. (2003). A Brief Introduction to Evidence-centered Design. (ETS RR-03-16). Princeton, NJ: ETS.
Murphy, K. (2004). Bayes Net Toolbox for Matlab. [online]. Available: http://www.ai.mit.edu/ ~murphyk/Software/BNT/bnt.html.
Rastrigin, L. A. & Erenstein, R. H. (1981). Method of collective recognition. Energoizdat:
Moscow.
Vomlel, J. (2004). Bayesian networks in educational testing. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 12(1), 83-100.
Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22, 418–435.