跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴亦德
研究生(外文):Yi-Te Lai
論文名稱:光潤金線蛭(無吻蛭目:黃蛭科)之覓食策略及覓食行為研究
論文名稱(外文):Foraging strategy and foraging behavior in the predatory leech Whitmania laevis (Arhynchobdellida: Haemopidae)
指導教授:陳俊宏陳俊宏引用關係李玲玲李玲玲引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:92
中文關鍵詞:光潤金線蛭最適捕食理論能量最大模型覓食行為嗅覺追蹤
外文關鍵詞:Whitmania laevisoptimal foraging theoryenergy maximization modelprey rpofitabilityforaging behaviorchemosensory detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1462
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
蛭類(蛭亞綱:有吻蛭目&無吻蛭目)動物均為肉食者,其中包含吸血的種類以及捕食的種類。前人對捕食型蛭類之覓食生態學研究雖涵蓋了許多有吻蛭目的物種以及無吻蛭目中之石蛭形亞目的一些種類,但無吻蛭目中的另一亞目(醫蛭形亞目)的種類卻罕有研究。由於兩亞目之蛭類其食性、偵測獵物方式、捕食行為等均大不相同,因此本研究以捕食多種淡水螺類之光潤金線蛭(醫蛭形亞目:黃蛭科)為實驗物種,並且挑選福壽螺、網蜷、石田螺、台灣椎實螺及囊螺五種與金線蛭共域之螺種,來探討光潤金線蛭的覓食策略與覓食行為。實驗結果顯示,光潤金線蛭對此五種淡水螺類分別有不同的尺寸偏好:在福壽螺、網蜷、石田螺此三種有口蓋螺類中,光潤金線蛭最偏好捕食中間尺寸的螺類個體;而在台灣椎實螺與囊螺兩種無口蓋螺類中,光潤金線蛭則是最偏好捕食大尺寸的螺類個體。藉由能量最大化模型之估計,我們發現光潤金線蛭的捕食偏好符合經濟效益期望值之預測,且除了實際所得肉重與光潤金線蛭入侵獵物個體所費時間之外,捕食成功率亦對經濟效益期望值有極大的影響。另外,當此五種螺類同時存在時,光潤金線蛭對此五種螺亦存在捕食之種類偏好,且推測此獵物種類偏好的原因為光潤金線蛭偏好捕食易受攻擊性較高的獵物種類。從實驗結果也發現,光潤金線蛭能夠偵測水中的螺類氣味,但無法藉此追蹤獵物,反而是以增加擺頭頻率、擴大搜尋範圍、以及減少長距離移動來增加接觸到獵物的機會。另外,實驗發現光潤金線蛭亦能夠以螺類的爬行痕跡來追蹤獵物。此五種螺類的爬行痕跡中,光潤金線蛭僅追蹤網蜷、台灣椎實螺、以及囊螺的爬行痕跡,並且無法藉由爬行痕跡辨別獵物大小。此外,當光潤金線蛭追蹤螺類的爬行痕跡時,會同時表現出一種新的搜尋行為:輕敲行為。根據以上結果,我們認為光潤金線蛭在覓食過程中藉由水中的獵物氣味來偵測獵物的存在,並且以獵物的爬行痕跡來追蹤易受攻擊性較高的獵物種類,而在接觸獵物之後,則是除了選擇易受攻擊性較高之獵物種類來捕食之外,也挑選收益率較高的獵物尺寸來捕食。
摘要……………………………………………………..i
ABSTRACT……………………………………………………….…….iii
CHAPTER ONE: Introduction…………………………………………...1
CHAPTER TWO: Optimal foraging strategy of W. laevis and a new evaluation of prey profitability in the energy maximization model….......6
Introduction………………………………………………………..6
Subjects……………………………………………………………..10
Size selective predation of W. laevis……………………………………………..11
Correlation of prey profitability with the size-selective predation of W. laevis….15
Correlation of prey profitability and prey vulnerability with the species-selective predation of W. laevis…………………………………………………………….23
Discussion…………………………………………………………..25
CHAPTER THREE: The chemosensory ability of prey searching in W. laevis………………………………………………………………….38
Introduction…………………………………………………………38
Prey detection of W. laevis through waterborn odors…...………………………..40
Prey detection of W. laevis follow waterborn odors…...………..………………..43

Prey detection and discrimination of W. laevis through mucus trails…...………..47
Discussion…………………………………………………………..53
CHAPTER FOUR: Conclusions….…………………………………….58
REFERENCES……………….…………………………………………60
TABLES
Table 1..………………………………………………...……….69
Table 2..………………………………………………...……….70
Table 3..………………………………………………...……….71
Table 4..………………………………………………...……….72
Table 5..………………………………………………...……….73
Table 6..………………………………………………...……….74
FIGURES
Figure 1..…...…………………………………………………75
Figure 2.....………………………………………………………77
Figure 3.....……………………………………………...……78
Figure 4.....……………………………………………...……79
Figure 5..……………………………………………...……...80
Figure 6.....………………………………………………………81
Figure 7..……………………………………………………...83
Figure 8..………………………………………………………...84
Figure 9.....……………………………………………….……86
Figure 10....…………………………………………….……...87
APPENDIX
Appendix 1........................................88
Appendix 2.............................................89
Appendix 3.............................................90
Appendix 4.............................................91
Appendix 5.............................................92
Anholt, B. 1986. Prey selection by the predatory leech Nephelopsis obscura in relation to three alternative models of foraging. Canadian Journal of Zoology, 64, 649-655.
Anholt, B. R. & Davies, R. W. 1987. Effect of hunger level on the activity of the predatory leech Nephelopsis obscura Verrill (Hirudinoidea: Erpobdellidae).The American Midland Naturalist, 117, 307-311.
Blinn, D. W., Pinney, C. & Wagner, V. T. 1988. Intraspecific discrimination of amphipod prey by a freshwater leech through mechanoreception. Canadian Journal of Zoology, 66, 427-430.
Blinn, D. W., Dehdashti, B., Runck, C. & Davies, R. W. 1990. The importance of prey size and density in an endemic predator-prey couple (Leech Erpobdella montezuma- Amphipod Hyalella montezuma). Journal of Animal Ecology, 59, 187-192.
Brönmark, C. & Malmqvist, B. 1986. Interactions between the leech Glossiphonia complanata and its gastropod prey. Oecologia, 69, 268-276.
Brönmark, C. 1992. Leech predation on juvenile freshwater snails: effects of size, species and substrate. Oecologia, 91, 526-529.
Brown, K. M. & Strouse, B. H. 1988. Relative vulnerability of six freshwater gastropods to the leech Nephelopsis obscura (Verrill). Freshwater Biology, 19, 157-165.
Charnov, E. L. 1976. Optimal foraging: attack strategy of a mantid. The American Naturalist, 110¸141-151.
Cooper, W. E. 2000. Food chemical discrimination by an herbivorous lizard, Corucia zebrata. Journal of Experimental Zoology, 286, 372-378.
Clifford, K. T., Gross, L., Johnson, K., Martin, K. J., Shaheen, N. & Harrington, M. A. 2003. Slime trail tracking by the predatory snail, Euglandina rosea. Behavioral Neuroscience, 117, 1086-1095.
Davies, R. W., Wrona, F. J. & Everett, R. P. 1978. A serological study of prey selection by Nephelopsis obscura Verrill (Hirudinoidea). Canadian Journal of Zoology, 56, 587-591.
Davies, R. W., Wrona, F. J., Linton, L. & Wilkialis, J. 1981. Inter- and intra-specific of the food niches of two sympatric species of Erpobdellidae (Hirudinoidea) in Alberta, Canada. Oikos, 37, 105-111.
Davies, R. W., Linton, L. R., Parsons, W. & Edgington, E. S. 1982a. Chemosensory detection of prey by Nephelopsis obscura (Hirudinoidea: Erpobdellidae). Hydrobiologia, 97, 157-161.
Davies, R. W., Wrona, F. J. & Linton, L. 1982b. Changes in numerical dominance and its effects on prey utilization and inter-specific competition between Erpobdella punctata and Nephelopsis obscura (Hirudinoidea): an assessment. Oikos, 39, 92-99.
Davies, R. W. & Kasserra, C. E. 1989. Foraging activity of two species of predatory leeches exposed to active and sedentary prey. Oecologia, 81, 329-334.
Davies, R. W., Dratnal, E. & Linton, L. R. 1996. Activity and forging behaviour in the predatory freshwater leech Nephelopsis obscura (Erpobdellidae). Functional Ecology, 10, 51-54.
Elliott, J. M. 1973. The diel activity pattern, drifting and food of the leech Erpobdella octoculata (L.) (Hirudinea: Erpobdellidae) in a lake district stream. Journal of Animal Ecology, 42, 449-459.
Elliott, E. J. 1986. Chemosensory stimuli and feeding behavior of the leech, Hirudo medicinalis. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 159, 391-401.
Elner, R. W. & Hughes, R. N. 1978. Energy maximization in the diet of the shore crab, Carcinus maenas. Journal of Animal Ecology, 47, 103-116.
Elner, R. W. & Raffaelli, D. G. 1980. Interactions between two marine snails, Littorina rudis Maton and Littorina nigrolineata Gray, a predator, Carcinus maemas (L.), and a parasite, Microphallus similes Jägerskiold. Journal of Experimental Marine Biology and Ecology, 43, 151-160.
Hughes, R. N. 1980. Optimal foraging theory in the marine context. Oceanography and Marine Biology Annual Review, 18, 423-481.
Hughes, R. N. & Seed, R. 1981. Size selection of mussels by the blue crab Callinectes sapidus: Energy maximizer or time minimizer? Marine Ecology Progress Series, 6, 83-89.
Juanes, F. & Hartwick, E. B. 1990. Prey size selection in Dungeness crabs: The effect of claw damage. Ecology, 71, 744-758.
Juanes, F. 1992. Why do decapod crustaceans prefer small-sized molluscan prey? Marine Ecology Progress Series, 87, 239-249.
Karrer, T. & Sahley, C. L. 1988. Discriminative conditioning alters food preferences in the leech, Haemopis marmorata. Behavioral and Neural Biology, 50, 311-324.
Kelly, P. M. & Cory, J. S. 1987. Operculum closing as a defence against predatory leeches in four British freshwater prosobranch snails. Hydrobiologia, 144, 121-124.
Lai, Y. T. & Chen, J. H. 2004. Foraging preference of the leech Whitmania laevis on two operculated freshwater snails. Endemic Species Research, 6, 67-78. (In Chinese, with English abstract)
Lawton, P. & Hughes, R. N. 1985. Foraging behaviour of the crab Cancer pagurus feeding on the gastropods Nucella lapillus and Littorina littorina: comparisons with optimal foraging theory. Marine Ecology Progress Series, 27, 143-154.
McClintock, J. B. & Robnett, T. J. Jr. 1986. Size selective predation by the Asteroid Pisaster ochraceus on the bivalve Mytilus californianus: A cost-benefit analysis. Marine Ecology, 7, 321-332.
Mascaró, M. & Seed, R. 2000. Foraging behavior of Carcinus maenas (L.): Comparisons of size-selective predation on four species of bivalve prey. Journal of Shellfish Research, 19, 283-291.
Mascaró, M. & Seed, R. 2001. Choice of prey size and species in Carcinus maenas (L.) feeding on four bivalves of contrasting shell morphology. Hydrobiologia, 449, 159-170.
Martin, A. J., Seaby, R. M. H. & Young, J. O. 1994. Does body size difference in the leeches Glossiphonia complanata (L.) and Helobdella stagnalis (L.) contribute to co-existence? Hydrobiologia, 273, 67-75.
Mathis, A. 2003. Use of chemical cues in detection of conspecific predator and prey by newt, Notophthalmus viridescens. Chemoecology, 13, 193-197.
McQuaid, C. D. 1994. Feeding behavior and selection of bivalve prey by Octopus vulgaris Cuvier. Journal of Experimental marine Biology and Ecology, 177, 187-202.
Pearce, T. A. & Gaertner, A. 1996. Optimal foraging and mucus trail following in the carnivorous land snail Haplotrema concavum. Malacological Review, 29, 85-99.
Pyke, G. H., Pullam, H.R. & Charmov, E. L. 1977. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology, 52, 137-154.
Rasmussen, J. B. & Downing, J. A. 1988. The spatial response of chironomid larvae to the predatory leech Nephelopsis obscura. The American Naturalist, 131, 14-21.
Roger, C., Coderre, C. & Boivin G. 2000. Differential prey utilization by the generalist predator Coleomegilla maculate lengi according to prey size and species. Entomologia Experimentlis et Applicata, 94, 3-13.
Rovero, F., Hughes, R. N. & Chelazzi, G. 2000. When time is of the essence: choosing a currency for prey-handling costs. Journal of Animal Ecology, 69, 683-689.
Saito, H., Imabayashi, H., Kawai, K. & Cole, V. 2004. Time and energetic costs of feeding on different sized prey by the predatory polychaete Halla okudai (Imajima). Journal of Experimental Marine Biology and Ecology, 311, 223-232.
Sawyer, R. T. 1986. Leech Biology and Behavior. Oxford: Clarenton Press.
Seaby, R. M. H., Martin, A. J. & Young, J. O. 1995. The reaction time of leech and triclad species to crushed prey and the significance of this for their coexistence in British lakes. Freshwater Biology, 34, 21-28.
Seed, R. & Hughes, R. N. 1995. Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies. Journal of Experimental Marine Biology and Ecology, 193, 177-195.
Shaheen, N., Patel, K., Patel, P., Moore, M. & Harrington, M. A. 2005. A predatory snail distinguishes between conspecific and heterospecific snails and trails based on chemical cues in slime. Animal Behaviour,70, 1067-1077.
Simon, T. W. & Barnes, K. 1996. Olfaction and prey search in the carnivorous leech Haemopis marmorata. The Journal of Experimental Biology, 199, 2041-2051.
Smallegange, I. M. & Van Der Meer, J. 2003. Why do shore crabs not prefer the most profitable mussels? Journal of Animal Ecology, 72, 599-607.
Takahashi, S. 1931. On the distribution and ecology of Whitmania laevis. Tokyo Zoological Magazine, 43, 607-611. (In Japanese)
Turbeville, J. M. & Briggler, J. T. 2003. The occurrence of Macrobdella diplotertia (Annelida: Hirudinea) in the Ozark Highlands of Arkansas and preliminary observation on its feeding habits. Journal of Freshwater Ecology, 18, 155-159.
Weissburg, M. J. & Zimmer-Faust, R. K. 1991. Ontogeny and phylogeny in determining patterns of chemoreception: initial studies with fiddler crabs. The Biological Bulletin, 181, 205-215.
Wrona, F. J., Davies, R. W. & Linton, L. 1979. Analysis of the food niche of Glossiphonia complanata (Hirudinoidea: Glossiphoniidae). Canadian Journal of Zoology, 57, 2136-2142.
Wrona, F. J. & Calow P. 1988. Optimal feeding in a freshwater sit-and-wait predator, Alboglossiphonia heteroclite (L.) (Hirudinoidea: Glossiphoniidae). Fuctional Ecology, 2, 171-175.
Wu, S. K. 1979. The leeches (Annelida:Hirudinea) of Taiwan Part 1. Introduction and descriptions of two hirudinid species. Quarterly Journal of the Taiwan Museum, 32, 193-207.
Yang, T. 1996. Fauna Sinica Annelida Hirudinea. Beijing: Science Press. (In Chinese)
Young, J. O. & Ironmonger, J. W. 1980. A laboratory study of the food of three species of leeches occurring in British lakes. Hydrobiologia, 68, 209-215.
Young, J. O. 1981. A serological study of the diet of British, lake-dweeling Glossiphonia complanata (L.) (Hirudinea: Glossiphoniidae). Journal of Natural History, 15, 475-489.
Young, J. O., Martin, A. J. & Seaby, R. M. H. 1993. Competitive interactions between the lake-dwelling leeches Glossiphonia complanata and Helobdella stagnalis: an experimental investigation of the significance of a food refuge. Oecologia, 93, 156-161.
Zimmer-Faust, R. K. 1987. Crustacean chemical perception: towards a theory on optimal chemoreception. The Biological Bulletin, 172, 10-29.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top