跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘彥臻
研究生(外文):Yan-Jhen Pan
論文名稱:探討蒟蒻纖維及果寡醣於D-半乳糖注射Balb/c雄鼠心血管功能之保健功效及其相關機制
論文名稱(外文):Healthy effects of konjac fiber and fructo-oligosaccharide on the cardiovascular function in D-galactose-treated Balb/c mice and the related mechanisms
指導教授:陳曉鈴陳曉鈴引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:本實驗有三個主要的研究目的。第一在探討長期注射D-半乳糖是否成功誘發Balb/c雄性小鼠老化相關的心血管損傷,第二是探討補充蒟蒻纖維、果寡醣及維生素E是否降低D-半乳糖誘發的心血管傷害,以及相關細胞機制。
材料方法:將12週齡大Balb/c雄性小鼠分成6組:控制組 (Control組)、D-半乳糖組 (DG組)、D-半乳糖-蒟蒻纖維組 (DG+K組,5%, w/w)、D-半乳糖-果寡醣組 (DG+FO組,5%, w/w)、D-半乳糖-蒟蒻果寡醣組 (DG+KFO組,各2.5%, w/w)、D-半乳糖-維生素E組 (DG+E組,0.04%, w/w)。Control組給予皮下注射 0.9%生理食鹽水,其他DG組則注射10% 半乳糖生理食鹽水 (1.2 g/Kg BW),介入49天犧牲。另有自然老化組 (NA組)不接受注射,於56週齡大犧牲。實驗期間NA組、Control組及DG組均給予控制組飼料,其餘組別餵食各實驗飼料。實驗結束前一週測量心電圖。小鼠禁食16小時後,以CO2昏迷犧牲,由下腔靜脈採血收集血液,並收集心臟、主動脈及測量左心室心肌厚度。分析項目包含心臟TUNEL stain、Masson trichrome stain、western blot分析;主動脈Elastin stain、RT-PCR分析及血漿總膽固醇、三酸甘油酯及脂質過氧化物濃度的測定。
結果:結果顯示,DG組及NA組有相似的心血管功能退化情形。在心臟方面,DG組的心跳速率顯著低於Control組,由心電圖顯示DG組之RR區間及QTc皆有延長之情形;另外,NA組及DG組在左心室心肌厚度、心肌細胞凋亡程度及心肌細胞凋亡Bid、Bax、Cytochrome c之蛋白表現量皆顯著高於Control組。補充蒟蒻纖維、果寡醣及維生素E可以降低DG造成的心跳速率異常、降低心肌凋亡程度及凋亡相關蛋白之表現至類似於Control組。在主動脈方面,與Control組比較,NA組及DG組之彈力纖維斷裂多且纖維層鬆弛、平均肌肉層厚度也顯著高於Control組,在LOX基因表現則顯著低於Control組。補充蒟蒻纖維、果寡醣及維生素E可以使血管型態回復至類似Control組,並提升LOX之基因表現量。在血液方面,NA組及DG組顯著增加血漿脂質過氧化產物、總膽固醇及三酸甘油酯的濃度,而在補充蒟蒻纖維、果寡醣及維生素E後,可顯著減少血漿脂質過氧化物、總膽固醇及三酸甘油酯的濃度。
結論:本研究顯示補充蒟蒻纖維、果寡醣及維生素E有助於改善D-半乳糖誘發的心血管損傷,推測可能藉由膳食纖維的啟動抗氧化壓力機制及調節血脂的作用,進而延緩氧化壓力造成的心血管病變、抑制心肌細胞凋亡路徑,並增加血管彈性相關基因表現。


Objectives:The study has two main goals. The first was to determine whether the long-term subcutaneous (s.c.) injection of D-galactose could induce the aging cardiovascular dysfunction in Balb/c male mice. The second is to determine effects of dietary supplement of konjac glucomannan (KGM), fructo-oligosaccharide (FOS) or vitamin E on the D-galactose-induced dysfunction and the underlying mechanisms.
Materials and Methods: The twelve-week-old male Balb/c mice were divided into control group, D-galactose group (DG group), D-galactose-konjac glucomannan group (DG+K group, 5% w/w), D-galactose-fructo-oligosaccharide group (DG+FO group, 5% w/w), D-galactose-KGM-FOS group (DG+KFO group, 2.5% w/w each), D-galactose-vitamin E group (DG+E group, 0.04% w/w as a antioxidant control). The control group was given 0.9% saline (s.c.) while the other groups were injected with D-galactose (s.c., 1.2 g/kg BW) for 49 days. Another natural aging group (NA group) did not receive any injection and were killed at 56 weeks old. The ECG was determined a week before the end of the experiment. Mice were anaesthetized with CO2 after 18 h fasting and a midline incision was made to collect blood from the inferior vena cava, and to dissect the heart and aorta. Analysis of the project includes ECG, left ventricular thickness, cardiac TUNEL stain, Masson trichrome stain, western blot, aortic elastin stain, RT-PCR, plasma total cholesterol, triglyceride and malondialdehyde.
Result:D-galactose and natural aging groups had similar cardiovascular dysfunction. The heart rate of DG group was significantly lower than that of the control group. Based on the ECG, the RR interval and QTc was greater in the DG than the control group. In addition, the left ventricular thickness, cardiac TUNEL stain level, and the cardic protein levels of Bid, Bax, Cytochrome c was significantly greater in the NA group and DG group than the control group, respectively. Supplementation of KGM, FOS or vitamin E could ameliorate the D-galactose-induced alterations in the heart rate, cardiac TUNEL stain and apoptosis-related proteins. In the aorta, the elastic fiber nicks and the thickness of smooth muscle layer of NA or DG group was significantly greater than those of the control group. The LOX gene expression of the aorta was significantly lower in the NA and DG groups than that of the control group. Supplementation of KGM, FOS or vitamin E could diminish the D-galactose-induced vascular alteration in the morphology and the LOX gene expression. The plasma MDA, total cholesterol, and triglyceride in the NA and DG groups were significantly greater than that in the control group. Supplementation of KGM, FOS or vitamin E effectively decreased these alterations.
Conclusion:Supplementation of KGM, FOS and vitamin E effectively decreased the alterations caused by the D-galactose in the heart and aorta. These effects was likely to be mediated by the antioxidative and lipid-lowering effects of dietary fiber, which subsequently ameliorate the oxidatie stress-related intracellular apoptotic pathway, and increased the related gene expression of elasticity of blood vessels.


中文摘要 I
Abstract III
表次 V
圖次 VI
縮寫表 VIII
第一章、文獻探討 1
第一節、老化 1
一、老化的定義與理論 1
二、老化與心血管疾病 1
三、以D–半乳糖誘發老化之動物模式 1
第二節、心臟功能調節機制 2
第三節、血管彈性與調節機制 3
第四節、膳食纖維 4
一、膳食纖維 4
二、生理功能 6
第五節、維生素E 9
一、維生素E化學性質與結構 9
二、維生素E的生理功能 9
第二章、研究緣由與目的 11
第三章、材料與方法 12
第一節、實驗設計 12
第二節、實驗動物及飼料成分 14
一、實驗動物品種及來源 14
二、動物飼養方式 14
三、實驗動物飼料 14
第三節、實驗方法 16
一、動物體重測量 16
二、動物飼料攝取量 16
三、心臟型態 16
四、採集主動脈 16
五、動物心電圖測定 17
六、組織切片 18
七、心臟細胞之凋亡機制及心臟老化表徵 19
八、血管老化表徵 23
九、血液分析 27
第四節、常用儀器與藥品 28
一、常用儀器 28
二、常用藥品 29
第四章、統計分析 29
第五章、結果 30
第一節、小鼠之體重變化及體重增加情形 30
第二節、小鼠之食物攝食及能量攝取情形 32
第三節、心臟相對重量 33
第四節、心肌厚度 34
第五節、心電圖 35
第六節、心臟TUNEL染色 37
第七節、心臟纖維化染色 40
第八節、心臟Bid、Bax及Cytochrome C之蛋白表現 43
第九節、主動脈型態、彈力纖維功能及血管平滑肌厚度 47
第十節、主動脈LOX之基因表現 50
第十一節、血漿脂質過氧化程度之影響 51
第十二節、血漿總膽固醇及三酸甘油脂 52
第六章、討論 53
第七章、結論 57
第八章、參考文獻 58
附錄一、心臟 H&E切片染色 66
附錄二、心電圖圖譜 67


1. 衛生福利部食品藥物管理署. 健康食品之延緩衰老功能評估方法. 2010.
2. Wang J, Michelitsch T, Wunderlin A, Mahadeva R. Aging as a consequence of misrepair--a novel theory of aging. arXiv preprint arXiv:0904.0575 2011.
3. 衛生福利部國民健康署. 102年國人主要死因統計結果. 2014.
4. 陳人豪, 嚴崇仁. 老年人之生理變化與檢驗數據判讀. 臺灣醫學 2003,7:356-363.
5. Bernstein M, Luggen A. Nutrition for the older adult: Jones & Bartlett Learning; 2009.
6. Song X, Bao M, Li D, Li YM. Advanced glycation in D-galactose induced mouse aging model. Mechanisms of ageing and development 1999,108:239-251.
7. Ho S-C, Liu J-H, Wu R-Y. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 2003,4:15-18.
8. Hsieh H-M, Wu W-M, Hu M-L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and chemical toxicology 2009,47:625-632.
9. Harman D. Aging: a theory based on free radical and radiation chemistry: University of California Radiation Laboratory; 1955.
10. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000,408:239-247.
11. WANG Z, LU C-r, SONG J-z. Physiologic and Biochemical Changes of Mimetic Aging Induced by D-galactose in Rats. Chinese Journal of Laboratory Animal Science 2003,4:014.
12. Jones J, Srodulski Z, Romisher S. The aging electrocardiogram. The American journal of emergency medicine 1990,8:240-245.
13. Ljubicic V, Menzies KJ, Hood DA. Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mechanisms of ageing and development 2010,131:79-88.
14. Simon H-U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000,5:415-418.
15. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972,26:239.
16. Kang PM, Izumo S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends in molecular medicine 2003,9:177-182.
17. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual review of genetics 2005,39:359.
18. Hiona A, Leeuwenburgh C. The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Experimental gerontology 2008,43:24-33.
19. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. American Journal of Physiology-Heart and Circulatory Physiology 1996,40:H1215.
20. Haunstetter A, Izumo S. Apoptosis basic mechanisms and implications for cardiovascular disease. Circulation research 1998,82:1111-1129.
21. Lee S-D, Chu C-H, Huang E-J, Lu M-C, Liu J-Y, Liu C-J, et al. Roles of insulin-like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation. American Journal of Physiology-Endocrinology And Metabolism 2006,291:E306-E314.
22. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S. Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. Journal of the American College of Cardiology 2001,38:2063-2070.
23. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. Journal of Clinical Investigation 2004,113:115-123.
24. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proceedings of the National Academy of Sciences 1999,96:8144-8149.
25. Holcik M, Korneluk RG. XIAP, the guardian angel. Nature reviews Molecular cell biology 2001,2:550-556.
26. Prockop J. Collagens: molecular biology, diseases, and potentials for therapy. Annual review of biochemistry 1995,64:403-434.
27. Debelle L, Tamburro A. Elastin: molecular description and function. The international journal of biochemistry & cell biology 1999,31:261-272.
28. 黃靜惠. 年紀大血管真的會變硬嗎? 彰化基督教醫院血管醫學防治中心電子報第13期 2010.
29. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biology 1998,16:387-398.
30. Lucero H, Kagan H. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cellular and Molecular Life Sciences CMLS 2006,63:2304-2316.
31. Rodríguez C, Martínez-González J, Raposo B, Alcudia JF, Guadall A, Badimon L. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovascular research 2008,79:7-13.
32. Mäki JM, Räsänen J, Tikkanen H, Sormunen R, Mäkikallio K, Kivirikko KI, et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 2002,106:2503-2509.
33. Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD. Lysyl oxidase is required for vascular and diaphragmatic development in mice. Journal of Biological Chemistry 2003,278:14387-14393.
34. Chen J-Y, Tsai P-J, Tai H-C, Tsai R-L, Chang Y-T, Wang M-C, et al. Increased aortic stiffness and attenuated lysyl oxidase activity in obesity. Arteriosclerosis, thrombosis, and vascular biology 2013,33:839-846.
35. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. American Journal of Physiology-Endocrinology And Metabolism 2004,286:E686-E696.
36. Abedin M, Tintut Y, Demer LL. Vascular calcification mechanisms and clinical ramifications. Arteriosclerosis, thrombosis, and vascular biology 2004,24:1161-1170.
37. Giachelli CM. Vascular calcification mechanisms. Journal of the American Society of Nephrology 2004,15:2959-2964.
38.賴鳴鳳, 廖樹杰, 呂政義. 水溶性蒟蒻膠萃取與分子性質之探討. 食品科學 1995,26:456-457.
39. Doi K. Effect of konjac fiber (glucomannan) on glucose and lipid. Eur J Clin Nutr 1995,49 Suppl 3:S190-197.
40. Wang CH, Lai P, Chen ME, Chen HL. Antioxidative capacity produced by Bifidobacterium‐and Lactobacillus acidophilus‐mediated fermentations of konjac glucomannan and glucomannan oligosaccharides. Journal of the Science of Food and Agriculture 2008,88:1294-1300.
41. Yeh S-L, Lin M-S, Chen H-L. Partial hydrolysis enhances the inhibitory effects of konjac glucomannan from< i> Amorphophallus konjac C. Koch on DNA damage induced by fecal water in Caco-2 cells. Food chemistry 2010,119:614-618.
42. Wu W-T, Chen H-L. Konjac glucomannan and inulin systematically modulate antioxidant defense in rats fed a high-fat fiber-free diet. Journal of agricultural and food chemistry 2011,59:9194-9200.
43. Chen H-L, Wang C-H, Kuo Y-W, Tsai C-H. Antioxidative and hepatoprotective effects of fructo-oligosaccharide in d-galactose-treated Balb/cJ mice. British Journal of Nutrition 2011,105:805-809.
44. Hsia C-H, Wang C-H, Kuo Y-W, Ho Y-J, Chen H-L. Fructo-oligosaccharide systemically diminished d-galactose-induced oxidative molecule damages in BALB/cJ mice. Br J Nutr 2012,107:1787-1792.
45. Anderson J. Physiological and metabolic effects of dietary fiber. In: Federation proceedings; 1985. pp. 2902-2906.
46. Jenkins DJ, Kendall CW, Vuksan V. Inulin, oligofructose and intestinal function. The Journal of nutrition 1999,129:1431S-1433s.
47. Shimizu H, Yamauchi M, Kuramoto T, Kubota N, Matsuda M, Hoshita T. Effects of dietary konjac mannan on serum and liver cholesterol levels and biliary bile acid composition in hamsters. Journal of pharmacobio-dynamics 1991,14:371-375.
48. Arvill A, Bodin L. Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. The American journal of clinical nutrition 1995,61:585-589.
49. Chen H-L, Sheu WH-H, Tai T-S, Liaw Y-P, Chen Y-C. Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subjects—a randomized double-blind trial. Journal of the American College of Nutrition 2003,22:36-42.
50. Chen H-L, Hsiang Y-Y, Wu W-T, Lin M-S. Hypolipidemic effects of inulin and synthetic oligofructose in Balb/c mice. 臺灣營養學會雜誌 2005,30:99-107.
51. Bouhnik Y, Achour L, Paineau D, Riottot M, Attar A, Bornet F. Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J 2007,6:42.
52. Nakamura Y, Natsume M, Yasuda A, Ishizaka M, Kawahata K, Koga J. Fructooligosaccharides suppress high‐fat diet‐induced fat accumulation in C57BL/6J mice. BioFactors 2011.
53. Macfarlane G, Cummings J. The colonic flora, fermentation, and large bowel digestive function. In: Raven Press, New York; 1991.
54. Mitsuoka T. Bifidobacteria and their role in human health. Journal of Industrial Microbiology 1990,6:263-267.
55. Campbell JM, Fahey GC, Wolf BW. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. The Journal of nutrition 1997,127:130-136.
56. Chen H-L, Cheng H-C, Liu Y-J, Liu S-Y, Wu W-T. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition 2006,22:1112-1119.
57. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. The Journal of nutrition 2006,136:70-74.
58. Elamir AA, Tester RF, Al-Ghazzewi FH, Kaal HY, Ghalbon AA, Elmegrahai NA, et al. Effects of konjac glucomannan hydrolysates on the gut microflora of mice. Nutrition & Food Science 2008,38:422-429.
59. Chen H-L, Cheng H-C, Wu W-T, Liu Y-J, Liu S-Y. Supplementation of konjac glucomannan into a low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults: a placebo-controlled, diet-controlled trial. Journal of the American College of Nutrition 2008,27:102-108.
60. 林孟萱. 不同分子量膳食纖維對小鼠腸道菌相及糞便水基因毒性之探討. 中山醫學大學營養科學研究所碩士論文 2004.
61. Wang X, Gibson G. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Microbiology 1993,75:373-380.
62. 曾韻樺. 探討果寡醣、異麥芽寡醣對慣性便祕安養中心居民之腸道菌相以及血液抗氧化狀態之影響. 中山醫學大學營養科學研究所碩士論文 2008.
63. Blaut M. Relationship of prebiotics and food to intestinal microflora. European Journal of Nutrition 2002,41:i11-i16.
64. Cummings JH. Short chain fatty acids in the human colon. Gut 1981,22:763-779.
65. Salminen S, Bouley C, Boutron M-C, Cummings J, Franck A, Gibson G, et al. Functional food science and gastrointestinal physiology and function. British Journal of Nutrition 1998,80:S147-S171.
66. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological reviews 2001,81:1031-1064.
67. Brandt L. Prebiotics enhance gut health. Prepared Foods 2001,170:7-10.
68. Kobayashi H, Fleming S. The source of dietary fiber influences—short chain fatty acid production and concentrations in the large bowel. CRC Handbook of Dietary Fiber in Human Nutrition 2001,3:287-315.
69. 楊琇棻. 以靜止發酵系統評估各種水溶性纖維於人體腸道之利用性. 中山醫學大學營養科學研究所碩士論文 2006.
70. Chen H-L, Lin Y-M, Wang Y-C. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids. Journal of agricultural and food chemistry 2010,58:10277-10281.
71. Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annual review of nutrition 1990,10:357-382.
72. Meraji S, Ziouzenkova O, Resch U, Khoschsorur A, Tatzber F, Esterbauer H. Enhanced plasma level of lipid peroxidation in Iranians could be improved by antioxidants supplementation. European journal of clinical nutrition 1997,51:318-325.
73. CAO X-B, XI Y, WANG Y-C. Effect of Vitamine E on oxygen free radical and biochemical parameters in D-galactose aging mice model. Chinese Journal of Gerontology 2007,14:006.
74. Shih C-K, Chang J-H, Yang S-H, Chou T-W, Cheng H-H. β-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. British journal of nutrition 2008,99:59-66.
75. Chan AC. Vitamin E and atherosclerosis. The Journal of nutrition 1998,128:1593-1596.
76. Terasawa Y, Ladha Z, Leonard SW, Morrow JD, Newland D, Sanan D, et al. Increased atherosclerosis in hyperlipidemic mice deficient in α-tocopherol transfer protein and vitamin E. Proceedings of the National Academy of Sciences 2000,97:13830-13834.
77. Shirpoor A, Salami S, Khadem-Ansari MH, Ilkhanizadeh B, Pakdel FG, Khademvatani K. Cardioprotective effect of vitamin E: rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. Journal of Diabetes and its Complications 2009,23:310-316.
78. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem 1951,193:265-275.
79. Hong Y-L, Yeh S-L, Chang C-Y, Hu M-L. Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clinical biochemistry 2000,33:619-625.
80. 洪孟君. 膳食果寡醣補充劑調節D-半乳糖注射 Balb/c雄鼠體內腦部、心血管功能及抗氧化分子濃度. 中山醫學大學營養學系碩士論文 2011.
81. Schwartz JB, Gibb WJ, Tran T. Aging effects on heart rate variation. Journal of gerontology 1991,46:M99-M106.
82. Pearson AC, Gudipati CV, Labovitz AJ. Effects of aging on left ventricular structure and function. American heart journal 1991,121:871-875.
83. Ganau A, Realdi G. Ageing induces left ventricular concentric remodelling in normotensive subjects. Journal of hypertension 1995,13:1818-1822.
84. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovascular research 2001,51:304-312.
85. Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2002,282:R423-R430.
86. Bishopric NH, Andreka P, Slepak T, Webster KA. Molecular mechanisms of apoptosis in the cardiac myocyte. Current opinion in pharmacology 2001,1:141-150.
87. Brown GC, Borutaite V. Nitric oxide, cytochrome c and mitochondria. In: Biochem Soc Symp; 1999. pp. 17-25.
88. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005,45:522-525.
89. Gros R, Van Wert R, You X, Thorin E, Husain M. Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. American Journal of Physiology-Heart and Circulatory Physiology 2002,282:H380-H388.
90. Greenberg SR. The association of medial collagenous tissue with atheroma formation in the aging human aorta as revealed by a special technique. 1986.
91. Sans M, Moragas A. Mathematical morphologic analysis of the aortic medial structure. Biomechanical implications. Analytical and quantitative cytology and histology/the International Academy of Cytology [and] American Society of Cytology 1993,15:93-100.
92. Hosoda Y, Minoshima I. Elastin content of the aorta and the pulmonary artery in the Japanese. Angiology 1965,16:325-332.
93. Wolk A, Manson JE, Stampfer MJ, Colditz GA, Hu FB, Speizer FE, et al. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. Jama 1999,281:1998-2004.
94. Lairon D, Arnault N, Bertrais S, Planells R, Clero E, Hercberg S, et al. Dietary fiber intake and risk factors for cardiovascular disease in French adults. The American journal of clinical nutrition 2005,82:1185-1194.
95. Kokubo Y, Iso H, Saito I, Yamagishi K, Ishihara J, Inoue M, et al. Dietary fiber intake and risk of cardiovascular disease in the Japanese population: the Japan Public Health Center-based study cohort. European journal of clinical nutrition 2011,65:1233-1241.
96. Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012,61:1058-1066.
97. Li X-M, Shi Y-H, Wang F, Wang H-S, Le G-W. In vitro free radical scavenging activities and effect of synthetic oligosaccharides on antioxidant enzymes and lipid peroxidation in aged mice. Journal of pharmaceutical and biomedical analysis 2007,43:364-370.
98. Fiordaliso M, Kok N, Desager J-P, Goethals F, Deboyser D, Roberfroid M, et al. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 1995,30:163-167.
99. Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink Jr R, et al. A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. Journal of the American College of Nutrition 2002,21:428-433.
100. Yen C-H, Kuo Y-W, Tseng Y-H, Lee M-C, Chen H-L. Beneficial effects of fructo-oligosaccharides supplementation on fecal bifidobacteria and index of peroxidation status in constipated nursing-home residents—A placebo-controlled, diet-controlled trial. Nutrition 2011,27:323-328.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top