跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱思妤
研究生(外文):Szu-Yu Chu
論文名稱:典寶溪流域水體及底泥中微量元素濃度之空間與時間變異研究
論文名稱(外文):Spatial and Temporal Variations of Trace Elements Contamination in Sediments and Water Bodies of Dian Bao River
指導教授:林啟燦林啟燦引用關係
指導教授(外文):Chi-Tsan Lin
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海洋環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:120
中文關鍵詞:典寶溪重金屬河川水質河川底泥感應耦合電漿放射光譜儀(ICP-OES)富集因子主成份分析集群分析
外文關鍵詞:Dian Bao RiverHeavy MetalRiver Water QualityRiver SedimentInductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)Enrichment FactorPrinciple Component AnalysisCluster Analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
典寶溪為高雄縣五大河川之一,沿河兩岸金屬工業發達,再加上不肖業者偷排,造成河川水質惡劣,成為環保署列管之重點整治河川。本研究自民國95年6月起規劃了19個採樣點,使用感應耦合電漿放射光譜儀(ICP-OES),分析水體及底泥中48種金屬元素含量,以了解典寶溪中微量元素之污染狀況。
研究結果顯示:各水質分析項目多數符合法規規範。水中總Fe(1.4±0.716 mg/L)、總Mn(0.27±0.184 mg/L)的濃度最高;其中,典寶橋等4測站總B的濃度超過我國放流水排放標準;而第一科大旁測站,總Zn濃度(0.61 mg/L)超過水體水質分類管制標準。經過一年四季共68次,以長期固定採樣結果發現,寶橋測站的總As、總B和總Zn污染濃度明顯較橋子頭橋測站高,代表污染源來自典寶橋上游回溯至橋子頭橋之間,總Cr、總Cu和、Ni、總Fe、總Pb和總Mn濃度比較結果顯示,污染源是來自橋子頭橋上游。
相關性統計分析結果顯示:(1)水中總B、總Cr與總Cu,(2)總Ni與總As,及(3)總Fe與總Zn,分別呈現高度且顯著的正相關(r>0.69,P<0.01)。相關性高之金屬可能來自相同的污染源。水中各金屬元素污染程度以空間分佈並由集群分析得到結果可分為三類集群,分別為(一)上游河段的烏山橋至鳳山厝橋,(二)單獨為ㄧ集群的福安橋,以及(三)由其餘共11個測站所集群而成。主要污染最嚴重區域落在集群二,為流域下游感潮河段部份。
底泥中各重金屬平均濃度於福安橋河段檢出濃度為最高;其中在福安橋測站總Zn最高濃度1740 mg/kg dry wt超過國內土水法管制標準值2.9倍;另外總Ni最高濃度645 mg/kg dry wt則是在鳳山厝支線的寶溪南街測站檢出,超過土水法管制標準3.2倍之高。
福安橋底泥中總重金屬垂直濃度約在40 cm深處濃度為最高,濃度高低與樣品有機質含量有明顯相關性,底泥濃度與粒徑雖呈正相關,但其相關性較有機質含量為弱,顯示有機質含量是重金屬累積之主控因素。另外由集群分析依金屬污染程度不同可得到分為三類集群之結果。
底泥主成分分析結果顯示,在主成分一由總Cr 、Cu、Zn組成,此結果與相關性分析結果相互呼應;主成分二由總Ni組成;主成分三由總Pb組成,共可解釋掉97.36%的變異,主成分一及二可能與流域之金屬工業相關,而主成分三則看不出與金屬加工業之關連。
典寶溪底泥重金屬之富集程度分佈情形顯示,以典寶溪背景點濃度來計算富集因子校正值會優於以地殼平均濃度來計算富集因子校正值,較符合實際現況。總Cr(EF=0.9~3.5)、總Cu(EF=0.7~3.9)、總Ni(EF=1.0~22.1)、總Zn(EF=1.5~17.0)於流域內部分測站皆有富集現象,尤其是Zn明顯有遭受人為污染。
比較國內外12條河川,發現國內河川重金屬污染普遍較國外嚴重,除了總Cu和總Pb污染濃度相對較低之外,其餘重金屬污染則顯得較為嚴重,值得相關單位警惕和注意。與國內外法規相較之下,典寶溪總Ni和總Zn已超過多項法規管制標準,其中總Ni濃度更高於美國NOAA TEL管制值5.7倍之高,值得相關單位警惕、持續監測及思考污染防治策略。
Dian Bao River is one of the major five rivers in the Kaohsiung County, where there was developed metal industry along both banks of the river. However, some unworthy metal mill owners discharged industrial wastes into the river by stealth, resulting in poor water quality, and thus the department of environment protection has focused on renovating this river. This research has planned for 19 sampling points since June, 2006, and used inductively coupled plasma optical emission spectrometer (ICP-OES) to analyze the content of 48 metal elements in the water and sediment, in order to understand the situation of trace element pollution in the Dian Bao River.

The research results indicated that most of the water quality analysis items could meet the standards set by law. The average concentration of total Fe (1.4±0.716 mg/L) and total Mn (0.27±0.184 mg/L) were the highest. Wherein, the total B concentration in the 4 observation stations at the Dian Bao Bridge exceeded Effluent Standards. At the observation station near National Kaohsiung First University of Science and Technology, the total concentration of Zn (0.61 mg/L) exceeded Surface Water Classification and Water Quality Standards. It was found in the result of the long-term (68 times through four seasons in a year) fixed sampling, that the pollution concentration of total As, total B, and total Zn from the observation station at the Dian Bao Bridge was obviously higher than that at the Ciao Zih Tou Bridge, which indicated that the pollutant source was at the place between the Dian Bao Bridge’s upper reaches and the Ciao Zih Tou Bridge. The comparison of the concentration of total Cr, total Cu and Ni, total Fe, total Pb, and total Mn indicated that the potential sources came from the upper reaches of Ciao Zih Tou Bridge.
The result of correlation statistic analysis indicated: a high-level and notable positive correlation (r>0.69, P<0.01) was evident among (1) the total B, total Cr and total Cu, (2) total Ni and total As, and (3) total Fe and total Zn. The metals with high correlation between each other probably came from the same pollutant source. The significance of metallic pollution in the water could be divided into three clusters according to the result of spatial distribution and cluster analysis, that is, (1) Wu Shan Bridge to Fong Shan Cuo Bridge at the upper reaches; (2) Fu An Bridge, considered as a cluster itself; (3) a cluster consisting of 11 observation stations. The area with the most serious pollution happened at the second cluster, belonging to the tidal reaches at the lower reaches.

The highest average concentration of each heavy metal in the sediment was observed at the Fu An Bridge river section; wherein the highest concentration of total Zn at the Fu An Bridge observation station was 1740 mg/kg dry wt, 2.9 times higher than the standard value regulated by the Soil and Groundwater Pollution Remediation Act; in addition, the highest concentration of total Ni, 645 mg/kg dry wt, was tested at the Bao Si South Street observation station at the Fong Shan Cuo branch, which was 3.2 times higher than the standard value regulated by the Soil and Groundwater Pollution Remediation Act.

The vertical distribution of total heavy metal concentration in the sediment at the Fu An Bridge reached its maximum value at about the 40 cm depth, and there was an obvious correlation between the concentration and the content of organic matter in the sample. Although the sediment concentration had a positive correlation with the particle diameter, it was not as obvious as that with the content of organic matter, which indicated that the content of organic matter was the main controlling factor of heavy metal accumulation. In addition, the cluster analysis based on metallic concentration could result in three kinds of clusters.

The sediment principle component analysis showed that, the component one consisted of Cr, Cu, and Zu, corresponding with the result of correlation analysis; the component two consisted of Ni, and the principle component three consisted of Pb, both of the components could explain 97.36% of the variations. The component one and two were probably related to the different types of metal industry at this drainage basin, whereas no correlation was found between the principle component three and the metal processing industry.

The sediment heavy metal enrichment factor analysis at the Dian Bao Stream indicated that it was better to calculate the enrichment factor based on the Dian Bao Stream background concentration than that by the crustal average concentration, in order to better match the actual situation. The enrichment factors of total Cr(0.9~3.5), total Cu(0.7~3.9), total Ni(1.0~22.1), and total Zn(1.5~17.0)all supported that enrichment effect in part of the observation stations within that drainage basin, especially for Zn.

By comparing with 12 domestic and foreign rivers, it was found that the heavy metal pollution in domestic rivers was more serious than that in foreign rivers. There was severe pollution by all heavy metals except the total Cu and total Pb, which should draw attention from relevant entities. Compared with domestic and overseas laws in this regard, the total Ni and total Zn at Dian Bao River has exceeded several standards regulated by law, and the total Ni concentration was 5.7 times higher than the value regulated by the US NOAA TEL, and therefore relevant entities shall keep their eyes on and keep monitoring this problem, and try to develop a sound pollution prevention strategy.
摘要 I
Abstrace III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章、前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章、文獻回顧 4
2.1 典寶溪流域背景簡介 4
2.1.1 典寶溪流域水文與人文資訊 4
2.1.2 重金屬廢水來源 5
2.2 微量元素與重金屬種類及毒性危害 12
2.3 重金屬污染之環境宿命與傳輸 19
2.4 我國金屬元素管制標準 19
2.4.1 我國水質管制標準 19
2.4.2 我國底泥管制標準 22
2.5 重金屬污染分佈之富集因子校正 22
2.6 國內外河川金屬元素調查研究 24
2.7 統計分析 27
第三章、材料與方法 29
3.1 採樣規劃 29
3.1.1 採樣地點 29
3.1.2 採樣時間 30
3.1.3 採樣方法 30
3.2 材料與研究設備 32
3.3 水質及底泥分析方法 32
3.3.1 水質分析方法 32
3.3.2 底泥分析方法 34
3.3.3 品保品管 37
第四章、結果與討論 38
4.1 ㄧ般水質特性 38
4.1.1 水溫之季節變化 38
4.1.2 pH之季節變化 38
4.1.3 導電度之季節變化 39
4.1.4 鹽度之季節變化 39
4.1.5 溶氧之季節變化 40
4.1.6 濁度之季節變化 40
4.2 水中各金屬元素分析結果與討論 48
4.2.1 空間污染分佈特性探討 48
4.2.2 時間污染分佈特性探討 51
4.2.3 水中各金屬元素相關性探討 70
4.2.4 水中各金屬元素集群相關分析 71
4.3 雨季之水中金屬濃度變化探討 73
4.4 底泥各金屬元素分析結果與討論 79
4.4.1 底泥空間污染分佈特性探討 79
4.4.2 福安橋測站底泥垂直深度重金屬分佈探討 86
4.4.3 底泥基本特性與各金屬元素之相關性探討 91
4.4.4 底泥各金屬元素集群相關分析 94
4.4.5 底泥污染物之主成分分析 96
4.4.6 底泥各重金屬濃度與富集因子校正比較 98
4.4.7 底泥中重金屬濃度與國內外各河川及法規值之比較 105
第五章、結論與建議 109
5.1 結論 109
5.2 建議 112
參考文獻 113
附錄 120
Ahsanullah, M., Ying, W., (1993) Tindal rhytms and assumulation of cadmium from water and sediment by soildier carbs. Marine Pollution Bulletin, 26, 20-33.
Balls, P. W., Hull, S., Miller, B. S., Pirie, J. M., Proctor, W., (1997) Trace metal in scottish estuarine and coastal sediments. Marine Pollution Bulletin, 34(1), 42-50.
Bertin, C., Bourg, A. C. M., (1995) Trends in the heavy metals content (Cu, Pb, Zn) of river sediments in the drainage basin of smelting activities. Water Research., 29(7), 1729-1736.
Birch, G. F. ,Olmos, M. A., (2006) The use of sediment-bound heavy metals as indicators of human impact on coastal waterways. Coast GIS 2006, Australia.
Buado, R., Giesy, J., Muntau, H., (1991) Sediments : Chemistry and Toxicity of In-Place Pollutants. Journal of the North American Benthological Society, 10(3), 344-345.
Chang, J., Yu, K., Tsai, L., Ho, S., (1998) Spatial distribution of heavy metals in bottom sediment of yenshui river, taiwan. Water Science and Technology, 38(11), 159-167.
Daskalakis, K. D., (1995) Normalization and elemental sediment contamination in the coastal united states. Environmental Science & Technology, 29, 470-477.
Fatoki, O. S., Hill, S. J., (1994) Speciation studies of tetraalkyllead and inorganic PbII in polluted roadside vegetation and soil samples. The International Journal of Environmental Studies, 46, 289-301.
Giusti, L., (2001). Heavy metal contamination of brown seaweed and sediments from the UK coastline between the wear river and the tees river. Environment International, 26(4), 275-286.
Izquierdo, C., Usero, J., Gracia, I., (1997). Speciation of heavy metals in sediments from salt marshes on the southern atlantic coast of spain. Marine Pollution Bulletin, 34(2), 123-128.
Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., Li, Y. S. (2003) Multivariate statistical study of heavy metal enrichment in sediments of the pearl river estuary. Environmental Pollution, 121(3), 377-388.
Long, E. R., (1992) “Ranges in chemical concentrations in sediments associated with the adverse biological effects” Marine pollution bulletin., Vol.24, pp.38-45.
Morillo, J., Usero, J., Gracia, I., (2002) Partitioning of metals in sediments from the odiel river (spain). Environment International, 28(4), 263-271.
Olías, M., Nieto, J. M., Sarmiento, A. M., Cerón, J. C., Cánovas, C. R., (2004). Seasonal water quality variations in a river affected by acid mine drainage: The odiel river (south west spain). Science of the Total Environment, 333(1-3), 267-281.
Olivares-Rieumont, S., de la Rosa, D., Lima, L., Graham, D. W., D′ Alessandro, K., Borroto, J., (2005) Assessment of heavy metal levels in almendares river sediments—Havana city, cuba. Water Research, 39(16), 3945-3953.
Okonkwo, J. O., Mothiba, M., (2005). Physico-chemical characteristics and pollution levels of heavy metals in the rivers in thohoyandou, south africa. Journal of Hydrology, 308(1-4), 122-127.
Phuong, P. K., Son, C. P. N., Sauvain, J. J., Tarradellas, J., (1998) Contamination by PCB’s, DDT’s and heavy metals in sediments of Ho Chi Minh City’s Canals, Viet Nam. Bulletin of Environmental Contamination and Toxicology, 60(3), 347-354.
Ramos, L., Fernandez, M. A., González, M. J., Hernández, L. M., (1999) Heavy Metal Pollution in Water, Sediments, and Earthworms from the Ebro River, Spain, Bulletin of Environmental Contamination and Toxicology, 63, 305-311.
Santos Bermejo, J. C., Beltrán, R., Gómez Ariza, J. L., (2003) Spatial variations of heavy metals contamination in sediments from odiel river (southwest spain). Environment International, 29(1), 69-77.
Schiff, K. C., Weisberg, S. B., (1999) Iron as a reference element for determining trace metal enrichment in southern california coastal shelf sediments. Marine Environmental Research, 48(2), 161-176.
Singh, M., Müller, G., Singh, I. B., (2003) Geogenic distribution and baseline concentration of heavy metals in sediments of the ganges river, india. Journal of Geochemical Exploration, 80(1), 1-17.
Taylor, S. R., (1964) Abundance of chemical elements in the continental crust:a new table. Geochimica et Cosmochimica Acta, 28(8), 1273-1285.
Tessier, A., P. G. C. Campbell., M. Bisson., (1980) Trace metal speciation in the Yamaska and St. Francois River( Quebec ). Canadian Journal of Earth Sciences , 17, 90-105.
Tsai, L. J., Yu, K. C., Chang, J. S., and Ho, S. T., (1998) Fractionation of heavy metals in sediment cores from the Ell-Ren River, Taiwan, Water Science and Techology, 37, 217-224.
Turgut, C., (2003) The contamination with organochlorine pesticides and heavy metals in surface water in küçük menderes river in turkey, 2000–2002. Environment International, 29(1), 29-32.
Van de Meent D., de Leeuw J.W., Schenck P.A., Salomons W., (1985) Geochemistry of suspended matter in two sedimentation basins of the river Rhine. Water Research, 19, 1333-1340.
Zayed, M. A., Eldien, F. A. N., Rabie, K. A., (1994) Comparative study of seasonal variation in metal concentrations in river nile sediment, fish, and water by atomic absorption spectrometry. Microchemical Journal, 49(1), 27-35.
Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., (2007). Heavy metal contamination in western xiamen bay sediments and its vicinity, china. Marine Pollution Bulletin, 54(7), 974-982.
Zhou, F., Guo, H., Hao, Z. (2007). Spatial distribution of heavy metals in hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Marine Pollution Bulletin, 54(9), 1372-1384.
Zoller, W. H., Gladney, E. S., Duce, R. A., (1974) Atmospheric Concentrations and Sources of Trace Metals at the South Pole. Science, 183(4121), 198-200.
刁茂文(2003),底泥中重金屬分佈特性之探討,國立屏東科技大學環境工程與科學研究所碩士論文。
王一雄、陳尊賢、李達源(1995),土壤污染學,國立空中大學,第一版,臺北縣。
元科科技股份有限公司(2007),執行水汙染許可登記及建檔管理計劃。
王紹文、姜鳳有(1992),重金屬廢水治理技術,治金工業出版社,第一版,北京市。
李宸靖(2006),後勁溪底泥中重金屬和半揮發性有機污染物之分佈調查,國立高雄海洋科技大學海洋環境工程研究所碩士論文。
吳明隆(2000),SPSS統計應用實務,松崗電腦圖書資料股份有限公司,第二版,臺北市。
吳明隆、凃金堂(2006),SPSS與統計應用分析,五南圖書出版股份有限公司,第二版,臺北市。
技佳工程顧問有限公司(2004),典寶溪流域污染源稽查管制及河川水質改善計畫暨二仁溪河川巡守及事業稽查管制計畫。
技佳工程顧問有限公司(2005),典寶溪流域重大事業污染源完全監控及深化全民河川巡守計劃暨二仁溪河川巡守及事業稽查管制計畫。
技佳工程顧問有限公司(2007),典寶溪流域河川水質改善及污染削減具體行動計畫。
林傑斌、劉明德(2001),SPSS 10.0與統計模式建構,文魁資訊股份有限公司,初版,臺北市。
林曉武(1998),淡水河底泥重金屬之沉降通量與垂直變化(Ⅱ),行政院環保署1998年度科技研究發展專案,EPA-89-U1G1-03-1120。
洪崑煌、王明光、陳尊賢、賴朝明、何聖賓、李達源(1996),土壤化學,國立編譯館,初版,臺北市。
陳志峰(2005),高屏港區陳積物及底層水中重金屬之分佈探討,國立中山大學環境工程研究所碩士論文。
孫鐵珩、周啟星、李培軍(2001),污染生態學,科學出版社,第一版,北京市。
黃春蘭(2001),水產種苗及養殖環境水質檢驗計畫-北高雄養殖區與河川環境調查,中華民國水產種苗協會。
黃春蘭(2003),水質學,藝軒出版社,第一版,臺北縣。
許峻嵐(2000),高屏海域沉積物重金屬之分佈與污染史,國立中山大學海洋地質及化學研究所碩士論文。
郭魁士(1990),土壤學,中國書局,第六版,臺北市。
經濟部水隸屬水利規劃試驗所(2004),高雄地區典寶溪排水環境營造計畫。
劉宗榮(1996),基礎毒理學,藝軒出版社,第一版,臺北市。
中央氣象局全球資訊網:http://www.cwb.gov.tw/,2008年4月20日。
中華人民共和國環境保護總部:http://www.sepa.gov.cn/,2008年4月20日。
行政院環保署網站:http://www.epa.gov.tw,2008年4月20日。
行政院環境保護署毒理資料庫網站:http://flora2.epa.gov.tw/prog/database.asp,2008年6月12日。
行政院環保署環境檢驗所網站:http://www.niea.gov.tw/,2008年4月20日。
美國華盛頓州生態管理署網站:http://www.ecy.wa.gov/,2008年4月20日。
美國國家海洋及大氣管理局網站:http://www.noaa.gov/,2008年4月20日。
高雄市政府民政局網站:http://cabu.kcg.gov.tw/newsFile/2008461113109210.xls,2008年4月21日。
高雄縣政府民政處網站:http://rosseauism.kscg.gov.tw/asw5/people.asp,2008年4月21日。
勞工安全衛生研究所MSDS資料庫網站:http://www.iosh.gov.tw/msds.htm,2008年6月12日。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊