跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱創富
研究生(外文):Chiou, Chuang-Fu
論文名稱:層接式共價鍵結自組裝法製備還原型氧化石墨烯可撓式感測器之電子特性與濕度感測探討
論文名稱(外文):Electrical and humidity sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer covalently anchoring on flexible substrate
指導教授:蘇平貴蘇平貴引用關係
指導教授(外文):Su, Pi-Guey
口試委員:張宏維何美霖
口試委員(外文):Chang, Hong-WeiHo, Mei-Lin
口試日期:2014-06-25
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:石墨烯
外文關鍵詞:graphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究為使用層接式胜肽共價鍵結技術(Layer-by-layer and peptide reaction covalently anchored technique)將氧化石墨烯(GO)固定於聚酯(PET)塑膠基板上的金電極,然後利用硼氫化鈉(NaBH4)將GO還原至部分還原程度的還原型氧化石墨烯(RGO),並對其進行濕度及電子特性研究。
此可撓式阻抗型濕度感測器表現出優異的防水特性、廣泛的感測線性範圍、快速的反應/回覆時間、對溫度依賴性低及良好的長期穩定性。
部分還原型的RGO在相對低濕30%與相對高濕90% RH下的阻抗頻譜圖曲線特性,證明在低濕時是以電子傳導為主,在高濕時是以離子傳導為主。

Novel flexible humidity sensors were fabricated by layer-by-layer (LBL) covalently bonding graphene oxide (GO) to a gold electrode on a plastic substrate using a peptide chemical protocol and then reducing in-situGO film to a partially reduced GO film. The effect of the duration of reduction of GO film on the electrical and humidity propertiesof the reduced GO film was investigated. This flexible impedance-type humidity sensor exhibited a strong water resistance, a wide working range of humidities, a short response/recovery time, a weak dependence on temperature and good long-term stability. The different complex impedance plots obtained at low and high relative humidity indicated that the ions dominate the conductance of the anchored partially reduced GO film.
摘要 I
Abstract II
表目錄 VII
圖目錄 VIII
第一章緒論 1
1-1 濕度介紹與偵測重要性 1
1-2 研究動機 2
第二章理論基礎與材料介紹 4
2-1濕度表示法 4
2-1-1絕對濕度(Absolute humidity) 4
2-1-2飽和濕度(saturated humidity) 5
2-1-3百分率濕度(Percentage humidity) 5
2-1-4露點(dew point) 5
2-1-5比濕度(specific humidity) 6
2-1-6相對濕度(Relative Humidity) 7
2-2濕度感測器之感測特徵 8
2-3濕度感測器之分類 9
2-4濕度感測器之感測特性 10
2-4-1濕度量程(Working range) 10
2-4-2感濕特徵曲線(Humidity characteristic) 11
2-4-3感濕靈敏度(Sensitivity) 11
2-4-4溫度係數(Temper ature effect) 12
2-4-5反應時間(Response time) 14
2-4-6遲滯效應(Hysteresis) 14
2-4-7壓電特性 15
2-5濕度感測器種類與原理 15
2-5-1電容式濕度感測器 16
2-5-2電阻式濕度感測器 16
2-5-3光學式濕度感測器 16
2-6可撓式基材之探究 17
2-7石墨與石墨烯之歷史回顧 20
2-8氧化石墨還原製備法之歷史回顧 24
2-9元件製程方法原理 26
第三章實驗設計與分析 31
3-1 實驗藥品 31
3-2 實驗器材與量測儀器 32
3-2-1實驗器材 32
3-2-2量測儀器 34
3-2-3電性測量 35
3-3 實驗流程與步驟 39
3-3-1塑膠基板之前處理 42
3-3-2 複合胺基端於金電極之製備 42
3-3-3 還原氧化石墨烯感測層之製備 43
第四章結果與討論 44
4-1 可撓式濕度感測元件之材料特性 44
4-1-1旋轉塗佈法製膜之耐水性探討 44
4-1-2元件之表面結構分析探討 45
4-1-3元件之官能基團分析探討 48
4-2可撓式濕度感測元件之電性及濕度特性探討 49
4-2-1元件之材料電性分析探討 49
4-2-2 元件之耐水特性探討 52
4-2-3濕度元件的可撓性探討 53
4-3可撓式濕度感測之感濕基本特性探討 54
4-3-1可撓式濕度感測之感濕線性及遲滯效應探討 54
4-3-2可撓性濕度感測器之溫度係數影響濕度感應特性探討 56
4-3-3可撓性濕度感測器之外加頻率影響濕度感應特性探討 57
4-3-4可撓性濕度感測器之反應時間與回覆時間探討 58
4-3-5可撓性濕度感測器之長期穩定度探討 59
4-4可撓性濕度感測器感測特性之比較 60
4-5可撓性濕度感測器傳導機制探討 61
第五章結論 64
參考文獻 65

參考文獻
1.E. Abad, S. Zampolli, S. Macro, A. Scorzoni, B. Mazzolai, A. Juarros, D. Gómez, I. Elmi, G. C. Cardinali, J. M. Gómez, F. Palacio, M. Cicioni, A. Mondini, T. Becker, I. Sayhan, Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic, Sens. Actuators B 127 (2007) 2-7.
2.A. Vergara, E. Llobet, J. L. Ramírez, P. Ivanov, L. Fonseca, S. Zampolli, A. Scorzoni, T. Becker, S. Marco, J. Wöllenstein, An RFID reader with onboard sensing capability for monitoring fruit quality, Sens. Actuators B 127 (2007) 143-149.
3.M. C. Mcalpine, H. Ahmad, D. Wang, J. R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nat. Mater. 16 (2007) 379-384.
4.Y. Sun, H. H. Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818-2823.


5.A. Oprea, N. Bârsan, U. Weimar, M.-L. Bauersfeld, D. Ebling, J. Wöllenstein, Capacitive humidity sensors on flexible RFID labels, Sens. Actuators B 132 (2008) 404-410.
6.E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra thin flexible capacitive humidity sensor, Sens. Actuators B 143 (2009) 302-307.
7.P. G. Su, C. S. Wang, Novel flexible resistive-type humidity sensor, Sens. Actuators B 123 (2007) 1071-1076.
8.P. G. Su, J. Y. Tseng, Y. C. Huang,H. H. Pan, P. C. Li, Novel fully transparent and flexible humidity sensor, Sens. Actuators B 137 (2009) 496-500.
9.P. G. Su, C. P. Wang, Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly- [3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials, Sens. Actuators B 129 (2008) 538-543.
10.Sakai, Y., “Design of polymer electrolytes-based humidity sensors”, Sensor Tech 2 (1992) 117-132.

11.K. Rubner, D. Balkose, and E. Robens, “Methods of humidity determination Part I: Hygrometry,”Journal of Thermal Analysis and Calorimetry 94(2008)669-673.
12.R. Das,How Printed Electronics is Disrupting the Electronic Interconnect Industry,IDTechEx.(2011).
13.P. G. Su,Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide,Sensors and Actuators B: Chemical, 190(2014) 865-872
14.S. Claramunt,Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres,Sensors and Actuators B 187 (2013) 401-406.
15.E. Skotadis,Flexible polyimide chemical sensors using platinum nanoparticles,Sensors and Actuators B In Press, Corrected Proof (2013).
16.O. Monereo,Flexible sensor based on carbon nanofibers with multifunctional sensing features,Talanta 107 (2013) 239-247.

17.G. S. Duesberg,Highly sensitive, transparent, and flexible gas sensors based on goldnanoparticle decorated carbon nanotubes,Sensors and Actuators B 188 (2013) 571-575.
18.M. Gardon,New procedures for building-up the active layer of gas sensors on flexible polymers,Surface and Coatings Technology In Press, Corrected Proof (2013).
19.U. Altenberenda,Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability,Sensors and Actuators B 187 (2013) 280-287.
20.G. S. Chung,A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape,Sensors and Actuators B 185 (2013) 777-784.
21.J. A. Espinoza,Flexible optical chemical sensor platform for BTX,Procedia Engineering 47 (2012) 607-610.
22.P. G. Su,Electrical and sensing properties of a flexible humidity sensor made of polyamidoamine dendrimer-Au nanoparticles,Sensors and Actuators B 165 (2012) 151-156.
23.G. S. Chung,Flexible hydrogen sensors using graphene with palladium nanoparticle decoration,Sensors and Actuators B 169 (2012) 387-392.
24.J. Kim,Graphene-based flexible NO2 chemical sensors,Thin Solid Films 520 (2012) 5459-5462.
25.S. Bernardini,A New Active Organic Component for Flexible Ammonia Gas Sensors,Procedia Engineering 25 (2011) 1069-1072.

26.E. Zampetti,Flexible sensorial system based on capacitive chemical sensors integrated with readout circuits fully fabricated on ultra thin substrate,Sensors and Actuators B 155 (2011) 768-774.
27.蕭慕柔,電解剝落法之石墨表面性質探討,國立中央大學化學工程與材料工程學系(2012).
28.林永昌、呂俊頡、鄭碩方、邱博文,石墨烯之電子能帶特性與其元件應用,PHYSICS BIMONTHLY33卷2期(2011).
29.K. S. NOVOSELOV,The rise of graphene,nature materials 6 (2007) 183-191.
30.K. I. Bolotina,Ultrahigh electron mobility in suspended graphene,Solid State Communications 146 (2008) 351-355.
31.K. S. Novoselov,Electric field effect in atomically thin carbon films,Science 306 (2004) 666.
32.R. S. Ruoff,Chemical methods for the production of graphenes,Nature Nanotechnology 4 (2009) 217-224.
33.G. Shi,Functional Composite Materials Based on Chemically Converted Graphene,Advanced Materials 23 (2011) 1089-1115.
34.Q. Bao,The chemistry of graphene, Journal of Materials Chemistry 20 (2009) 2277-2289.
35. Z. Song,Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,The Journal of Physical Chemistry B 108 (52) (2004) 19912-19916.
36. J. A. Robinson,Characterization of Graphene Films and Transistors Grown on Sapphire by Metal-Free Chemical Vapor Deposition,ACS Nano 5 (10) (2011) 8062-8069.
37.R. S. Ruoff,Chemical methods for the production of graphenes,nature nanotechnology 4 (2009) 217-224.
38.S. Stankovich,Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,Carbon 45 (2007) 1558-1565.

39.林哲瑩,高敏度表面與高解析技術診斷聚集並表現之單一核苷酸多型性:運用SAMs技術固定寡核苷酸,國立成功大學材料科學及工程學系(2005).
40.M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis,Cross-linking of dermal sheep collagenusing a water-soluble carbodiimide,Biomaterials 17 (1996) 765-773.
41.P.G. Su, I.C. Chen, R.J. Wu, “Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity”, Anal. Chim. Acta 449 (2001) 103-109.
42.Y. Yao, X. D. Chen, H. H. Guo, Z. Q. Wu, Graphene oxide thin film coated quartz crystal microbalance for humidity detection, Appl. Surf. Sci. 257 (2011) 7778-7782.
43.L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wanf, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, H. B. Sun, Two-beam-layser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device, Carbon 50 (2012) 1667-1673.
44.Q. Huang, D. Zeng, S. Tian, C. Xie, Syntesis of defect and its application for room temperature humidity sensing, Mater. Lett. 83 (2012) 76-79.
45.Y. Yao, X. D. Chen, H. H. Guo, Z. Q. Wu, X. Y. Li, Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure, Sens. Actuators B 161 (2012) 1053-1058.
46.C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, J. R. Stetter, Humidity sensing properties of Nafion and solgel derived SiO2/Nafion composite thin films, Sens. Actuators B 40 (1997) 217-222.
47.J. Wang, Q. Lin, T. Zhang, R. Zhou, B. Xu, Humidity sensor based on composite material of nano-BaTiO3 and polymer RMX, Sens. Actuators B 81 (2002) 248-253.

48.J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang, Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Mater. Chem. Phys. 78 (2003) 746-750.
49.F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on grapheme, Nat. Mater. 6 (2007) 652-655.
50.O. Leenaerts, B. Partoens, F. M. Peeters, Adsorption of H2O, NH3, CO NO2 and NO on graphene: A first-principles study, Phys. Rev. B 77 (2008) 125416-6.
51.E. W. Hill, A. Vijayaragahvan, K. Novoselov, Graphene sensors, IEEE Sensor J. 11 (2011) 3161-3170.
52.J. Moser, A. Verdaguer, D. Jiménez, A. Barreiro, A. Bachtold1, The environment of graphene by electrostatic force microscopy, Appl. Phys. Lett. 92 (2008) 123507-3.
53. T. O. Wehling, M. I. Katsnelson, A. I. Lichtenstein, Adsorbates on graphene: impurity states and electron scattering, Chem. Phys. Lett. 476 (2009) 125-134.

54. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, A. T. C. Johnson, Intrinsic response of graphene vapor sensors, Nano Lett. 9 (2009) 1472-1475.
55. G. Casalbore-Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, M. Ling, Investigations on the ion transport mechanism in conduction polymer films, Solid State Ionics 131 (2000) 311-321.
56. P. G. Su, S. C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material, Sens. Actuators B 113 (2006) 142-149.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top