[1]胡啟章:電化學原理和方法 五南圖書出版公司出版
[2]“Battery perform characteristics,” Available at: http://www.mpoweruk.com/performance.htm. Accessed 13 July 2014
[3]P. Simon, and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature materials, vol. 7, pp. 845-854 (2008).
[4]M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Lett., vol.8, pp. 3498-3502 (2008).
[5]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, pp. 902-907 (2008).
[6]K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chemical Reviews, vol. 104, pp. 4303-4417 (2004).
[7]L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, and D. S. Silvester, “Voltammetry in Room Temperature Ionic Liquids : Comparisons and Contrasts with Conventional Electrochemical Solvents,” Focus Reviews, vol. 5, pp. 202-230 (2010).
[8]M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-Liquid Materials for the Electrochemical Challenges of the Future,” Nature materials, vol. 8, pp. 621-629 (2009).
[9]J. R. Miller, and P. Simon, “Materials science: Electrochemical capacitors for energy management,” Science, vol. 321, pp. 651-652(2008).
[10]M. Winter, and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?,” Chemical Reviews, vol. 104, pp. 4245-4269(2004).
[11]P. Sharma, and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010).
[12]M. S. Halper, and J. C. Ellenbogen “Supercapacitors: A Brief Overview,”(2006).
[13]A. K. Geim, and K. S. Novoselov “The rise of graphene,” Nature materials, vol. 6, pp. 183-191 (2007).
[14]H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites,” Macromolecules, vol. 43 pp. 6515-6530 (2010).
[15]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, pp. 666-669 (2004).
[16]J. Hass, W. A. de Heer, and E. H. Conrad, “ The growth and morphology of epitaxial multilayer graphene,” Condensed Matter, vol. 20, pp.323202 (2008).
[17]X. Li, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, pp.1312-1314 (2009).
[18]Y. J. Hu, J. Jin, H. Zhang, P. Wu, and C. X. Tsai, “Graphene: Synthesis, Functionalization and Applications in Chemistry,” Acta Phys. Chim. Sin., vol. 26, pp. 2073-2086 (2009).
[19]W. S. Hummers, and R. E. Offeman, J. Am. Chem. Soc., 1958, 80(6): 1339.
[20]B.C. Brodie, Phil. Trans. R. Soc. Lond., 1859, 149: 249.
[21]L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898,31(2): 1481
[22]H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance,” Adv. Funct. Mater., vol. 12, pp.1987-1992 (2009).
[23]M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. Wang, and S. Dong, “Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films,” Chem. A Eur. J., vol. 15, pp.6116-6120 (2009).
[24]P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, “Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide,” Macromol Rapid Commun, vol. 30, pp.316-327 (2009).
[25]J. M. Michael, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, H. A. Margarita, L. M. David, C. Roberto, K. P. Robert, A. A. Ilhan, “Single sheet Functionalized Graphene by Oxidation amd Thermal,” Chem. Mater., vol. 19, pp. 4396-4404 (2007).
[26]X. Chen, D. He, S. Mu, “Nitrogen-Doped Graphene,” Pro. In Chem., vol. 25, pp. 1292-1301 (2013).
[27]C. S. Hannes, J. L. Li, J. M. Michael, S. Hiroaki, H. A. Margarita, H. A. Douglas, K. P. Robert, C. Roberto, A. S. Dudley, and A. A. Ilhan, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem. B, vol. 110, pp. 8535-8539 (2006).
[28]O. C. Compton, and S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” small, vol. 6, pp.711-723 (2010).
[29]S. Latil, S. Roche, D. Mayou, and J. C. Charlier, “Mesoscopic Transport in Chemically Doped Carbon Nanotubes,” Phys Rev Lett., vol. 92, pp.256805 (2004).
[30]K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction,” Science Magazine, vol. 323, pp.760-764 (2009).
[31]X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, “Simultaneous Nitrogen-Doping and Reduction of Graphene Oxide,” J. Am. Chem. Soc., vol. 131, pp.15939-15944 (2009).
[32]Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.3 JUN. 2011.
[33]P. T. Anastas, and J. B. Zimmerman, “Design through the 12 principles of green engineering,” Environ. Sci. Technol., 2003, 37, 94A.
[34]張娟華, “離子液體嵌入奈米碳管對電化學微電容器的儲能性質影響,” 國立台灣科技大學碩士論文(2013)[35]A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, “Ionic liquids for hybrid supercapacitors,” Electrochem. Commun., vol. 6, pp. 566-570 (2004).
[36]E. Frackowiak, G. Lota, and J. Pernak, “Room-temperature phosphonium ionic liquids for supercapacitor application,” Appl. Phys.Lett., vol. 86, pp.1-3 (2005).
[37]M. Lazzari, M. Mastragostino, and F. Soavi, “Capacitance response of carbons in solvent-free ionic liquid lectrolytes,” Electrochem. Commum., vol. 9, pp. 1567-1572 (2007).
[38]Placke, Tobias, O. Fromm, S. F. Lux, P. Bieker, S. Rothermel, H. W. Meyer, S. Passerini, and M. Winter. “Reversible Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells,” Journal of The Electrochemical Society, vol. 159, pp. 1755-1765 (2012).
[39]Lu, Wen, L. Qu, K. Henry, and L. Dai, “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes,” Journal of Power Sources, vol. 189, pp. 1270-1277 (2009).
[40]Balducci, Andrea, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, and F. Soavi, “Cycling Stability of a Hybrid Activated Carbon//Poly(3-Methylthiophene) Supercapacitor with N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid as Electrolyte,” Electrochimica Acta, vol. 50, pp. 2233-2237 (2005).
[41]M. Lazzari, F. Soavi, and M. Mastragostino, “High Voltage, Asymmetric Edlcs Based on Xerogel Carbon and Hydrophobic Il Electrolytes,” Journal of Power Sources, vol. 178, pp. 490-496 (2008).
[42]A. Balducci , R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini, “High Temperature Carbon–Carbon Supercapacitor Using Ionic Liquid as Electrolyte,” Journal of Power Sources, vol. 165,pp. 922-927 (2007).
[43]M. Mastragostino, and F. Soavi, “Capacitors | Electrochemical Capacitors: Ionic Liquid Electrolytes,” Encyclopedia of Electrochemical Power Sources, pp. 649-657 ( 2009).
[44]Balducci, Andrea, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, “Ionic Liquids for Hybrid Supercapacitors,” Electrochemistry Communications, vol. 6, pp. 566-570 (2004).
[45]M. F. El-Kady, and R. B. Kaner, “Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and on-Chip Energy Storage,” Nature Communications, vol. 4, (2013).
[46]Y. J. Kang, H. Chung, C. H. Han, and W. Kim, “All-Solid-State Flexible Supercapacitors Based on Papers Coated with Carbon Nanotubes and Ionic-Liquid-Based Gel Electrolytes,” Nanotechnology, vol. 23, pp. 289501 (2012).
[47]B. Kim, H. Chung, and W. Kim, “High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes,” Nanotechnology, vol. 23, pp. 155401 (2012).
[48]R. T. Carlin, H. C. De Long, J. Fuller, and P. C. Trulove, “Dual Intercalating Molten Electrolyte Batteries,” Journal of The Electrochemical Society, vol. 141 , pp. 73-76 (1994).
[49]J. A. Seel, and J. R. Dahn, “Electrochemical Intercalation of Pf6 into Graphite,” Journal of The Electrochemical Society, vol. 147, pp. 892-898(2000).
[50]L. J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novak, and R. Kotz, “An in Situ Raman Study of the Intercalation of Supercapacitor-Type Electrolyte into Microcrystalline Graphite,” Electrochimica Acta, vol. 52, pp. 675-680(2006).
[51]M. Hahn, O. Barbieri, F. P. Campana, R. Kotz, and R. Gallay, “Carbon Based Double Layer Capacitors with Aprotic Electrolyte Solutions: The Possible Role of Intercalation/Insertion Processes,” Applied Physics A, vol. 82, pp. 633-638 (2006).
[52]L. E. Smart, and E. A. Moore. Solid State Chemistry: An Introduction, Third Edition: Taylor &; Francis,pp.296 (2005).
[53]Scott Handy, Middle Tennessee State University, USA “Applications of Ionic Liquids in Science and Technology,” ISBN 978-953-307-605-8, Published: September 22, 2011 under CC BY-NC-SA 3.0 license
[54]Mitani, Satoshi, M. Sathish, D. Rangappa, A. Unemoto, T.Tomai, and I. Honma, “Nanographene Derived from Carbon Nanofiber and Its Application to Electric Double-Layer Capacitors,” Electrochimica Acta, vol. 68, pp. 146-152 (2012).
[55]S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in multimolecular layers”, Journal of the American Chemical Society, vol. 60, pp. 309-319 (1938).