跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪坤廷
研究生(外文):Kuen-Ting Hung
論文名稱:多孔性氧化鋁基板阻障層形態及其應用
論文名稱(外文):The barrier layer shape of porous AAO substrate and its application
指導教授:黃建盛黃建盛引用關係
指導教授(外文):Chien-Sheng Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:78
中文關鍵詞:奈米線電鍍電解拋光氧化鋁奈米孔洞
外文關鍵詞:electrochemistry depositionnanowireselectropolishedanodic alumina oxide (AAO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具有良好陣列之氧化鋁奈米孔洞可由控制良好的陽極處理條件獲得。本研究使用高純度鋁塊材(99.999%)先進行電解拋光,反應條件為20 volts,在硫酸(33%)-磷酸(33%)-DI water(33%) 混合溶液中,攝氏 25 度的環境下拋光 20 分鐘,然後再放至攝氏 5 度與外加電壓為 40 volts 的 0.3M 草酸溶液中進行氧化鋁奈米孔洞的生長反應,歷時為 8 小時。其結果由SEM 觀察得知,我們所得到的奈米孔洞的直徑約為 30 奈米。本實驗的成品可獲得具陣列氧化鋁基板且厚度可以達到20μm,並可利用電鍍的技術來形成金屬奈米線。
將成長完成的奈米孔洞陣列利用降電流法減少背部障壁層後,再電鍍鎳奈米線。本研究電鍍完的鎳奈米線長度由SEM(Scanning Electron Microscopy)得知,再由BEI(Backscattering Electron Image )及EDS(Energy dispersive spectroscopy )觀察證實其元素確實為鎳。所成長的鎳奈米線可進一步用來作為奈米磁性材料。
The pore array of anodic alumina oxide (AAO) was achieved by good anodization condition. This research used a high pure aluminum sheet (99.999%), electropolished under the conditions of 20V, 25℃, 20min in the mixed solution composed of sulfuric acid (33%) - phosphoric acid (33%) - DI water (33%). The conditions of anodization were 40V, 0.3M oxalic acid solution, 5℃, 8 hours. Observed by SEM, the diameter of AAO pores was 30 nm. Highly ordered AAO array was obtained and the thickness of AAO was 20μm. After some pore widening process, Ni nanowires were formed by electrochemistry deposition method.
The barrier layer of AAO array was reduced by lowing the anodic current, then the Ni nanowires were deposited. The length of Ni nanowires was examed by SEM, BEI, EDS. It showed that the Ni nanowires had been successfully fabricated within the nanopores. Such grown Ni nanowires could be used in the application of nano magnetic matericals.
中文摘要...............................................................I
英文摘要..............................................................II
誌謝.................................................................III
目錄..................................................................IV
圖目錄.................................................................V
表目錄..............................................................VIII
第一章 緒論............................................................1
1.1 前言.............................................................1
1.2 陽極氧化與奈米孔洞...............................................1
第二章 文獻回顧與背景介紹..............................................3
2.1 多孔氧化鋁模板之機制與參數.......................................3
2.2 一次陽極氧化與二次陽極氧化之簡介................................12
2.3 奈米線之製備簡介................................................15
2.4 電化學沈積原理..................................................17
2.5 磁性物質之特性..................................................19
2.6 分析儀器之簡介..................................................26
第三章 實驗方法.......................................................29
3.1 研究動機與方法..................................................29
3.2 實驗步驟........................................................32
第四章 結果與討論.....................................................37
4.1 多孔氧化鋁模板之結構與製程之電流時間曲線分析....................37
4.2 陽極氧化鋁形成參數之比較........................................42
4.3 利用多孔氧化鋁模板形成陣列式鎳奈米線............................52
第五章 結論與未來展望.................................................64
第六章 參考文獻.......................................................66
1 H., K., Z., Electrochem., 55, p. 165-9(1951).
2 H. M., K. F., Science, 268, p. 1466(1995).
3 A. P. Li, F. M., A. B., K. N., U. G., Journal of Appled Physic, 84, p. 6023(1998).
4 G.E. T., G.C. W., Nature, 357 (1992) 391
5 H. C., R. G. D., Nature, 357 (1992) 391
6 R.J. T.i, B.L. J., Science, Col. 258, No. 30 (1992) 783
7 H. M. and K.F., Science, 268 (1995) 1446
8 N. T., T. T., M. S., IEEE Transaction on Magnetics, No.5 (1986) 1140
9 S. I., Y. N. and K. O., IEEE Transaction on Magnetics, No.6 (1979) 1456
10 M. S., Y. W., T. T. and N. T., IEEE Transaction on Magnetics, No.5 (1985)
11 K. N., F. M., Adv. Mater. 12,582 (2000).
12 K. N., R. H., R. B. W. etc., IEEE. 38, 2571 (2002).
13 R. M. M., V. V. K., M. S., IEEE. 36,30 (2000).
14 Y. L. et al., Appl. Phys. Lett. 76,2011 (2000).
15 K. D., I. E., A. L., V. R., O. V., Nuclear Physics B, 125, p. 394(2003).
16 H. H. S., K. Y. Y.,” The Effect of Aluminum Heat Treatment on the Growth of
Aluminum Oxide Film,” (2005).
17 陳亮羽,2004,國立清華大學化學工程研究所碩士論文
18 F. Li, L. Z., R. M. M., Chemical of Materials, 10,p. 2470(1998).
19 G. E. T., Thin Solid Films, 297, p. 192(1997).
20 O. J., F. M., U.G., Appl. Phys. Lett. 72, 1173 (1998)
21 E.. Solid-State Lett., vol 3, 131, 2000
22 D. C., Y. H. L., A. E. M., M. C., Applied Physics Letters,76, p. 49(2000).
23 O. R., P. R. H., Y. M. L., S. B. C., S. D., Advanced Functional Materials,13, p.631(2003).
24 A. M., M. S., I. S., H. T., Electrochimica Acta,48, p. 3155(2003).
25 Y. D., W. L. C., Appl. Phy. Let., 74 (1999) 2951
26 G. E. T., G. C. W., Nature, 290 (1981) 230
27 Y., United States Patent No. 6231744, 2001
28 M., United States Patent No. 5747180, 1998
29 Y., United States Patent No. 6139713, 2000
30 C. T. K., “Field emission of carbon nanotubes on anodic aluminium oxide template with controlled tube density”, AsianCVD, 2004.
31 C. T. K., “Field emission of carbon nanotubes on anodic aluminium oxide template with controlled tube density”, AsianCVD, 2004.
32 J. S. S., J. S. L., Appl. Phys. Lett. 75, 2047 (1999).
33 H. M., H. Y., M. S., H. A., M. N., T. T., Applied Physics Letters,71, p. 2770(1997)
34 Y. C. K., and D. P. Y., Applied Physics Letters, 78(4), 407-409 (2001)
35 Y. Z., Q. Z., Y. L., N. W., and J. Z., Solid State Communications, 115, 51–55 (2000).
36 A. A. S., J. M. L., Applied Physics Letters, 345-347 (1996).
37 A. Z. J., Y. G. W., Z. Z., 252, 167–173 (2003).
38 Y. G., D. H. Q., J. B. D., and H. L. L., Applied Surface Science, 218, 106–112 (2003).
39 P. A., J. M. G., Journal of Magnetism and Magnetic Materials, 249, 214–219
(2002).
40 A. F., L. P., Journal of Magnetism and Magnetic Materials, 200, 338-358 (1999).
41 S. S., O. O., Y. S., H. S., T. T., Solid-State Electronics, 43, 1143-1146 (1999).
42 Y. Z., J. H., C. S., H. Li, Materials Science and Engineering, 335(A), 260–267 (2002).
43 M. S. G., J. L., Nature, 617-620 (2002).
44 X. Y. Y., T. X., G. S. W., Y. L., G. W. M., L. D. Z., Physica, 23(E), 75-80 (2004).
45 X. Y. Y., G. S. W., T. X., Y. L., G. W. M., L. D. Z., Solid State Communications, 130, 429–432 (2004)
46 L. L., Y. Z., G. L., L. Z., Chemical Physics Letters, 378, 244–249 (2003).
47 Y. Z., C. S., H. L., Solid State Ionics, 146, 81–86 (2002).
48 Y. G. G., L. J. W., C. F. Z., D. L. Y., D. M. C., and C. L. B., Chem. Mater., 15, 664-667 (2003).
49 C. G. J., W. F. L., C. J., X. Q. X., W. L. C., L. Z. Y., X. G. L., Journal of Crystal Growth, 258, 337–341 (2003).
50 A. K. M. B., J. R., G. Z., M. A. L. Q., and M. C. B., Journal of Non-Crystalline Solids, 287, 5–9 (2001).
51 D. H. Q., L. C., Q. Y. S., Y. H., H. L. Li, Chemical Physics Letters, 358, 484–488 (2002).
52 G. B. J., W. C., S. L. T., B. X. G., Z. L., Y. W. D., Solid State Communications, 130, 541–545 (2004).
53 K. M., S. K., K. H., T. W., N. F., Electrochimica Acta, 44, 3713-3719 (1999).
54 Y. K. S., D. H. Q., H. L. Z., H. L., H. L. L., Chemical Physics Letters, 388, 406–410
(2004).
55 賴耿陽,實用電鍍技術全集,復漢出版社,民87 年。
56 熊楚強,王月,電化學,大洋出版社,民85 年。
57 張世杰,次0.15 微米溝渠與引洞上電鍍銅技術,交通大學材料所碩士論文,民
89 年。
58 金重勳,磁性技術手冊,磁性技術協會,民91 年
59 J. B., Z. X., J. H., X. M., Z. L., Scripta Materialia,50 (2004) 19-23
60 J. X., X. H., G. X., Y. F., D. L., Materials Research Bulletin 39 (2004) 811–818
61 D. H. Q., M. L., H. L. L., Chemical Physics Letters 350 (2001)51-56
62 H. Z., M. Z., R. S., D. J. S., Y. L., L. M., S. B., Journal of Applied Physics 87 9 (2000) 4718-4721
63 M. K., W. J. B., D. G., R. E. B., F. L., P. M. P., L. J. d. J., Journal of Magnetism and Magnetic Materials 249 (2002) 241-245
64 P. M. P., F. L., M. K., G. S., L. J. d. J., Journal of Magnetism and Magnetic Materials 224 (2001) 180-196
65 A. F., L. P., Journal of Magnetism and Magnetic Materials 200 (1999) 338-358
66 L. P., S. D., J.L.M., K.O., A.F., J. M.. M.. Mater.175 (1997) 127-136
67 L. P., S. D., E. F., R. L., K. O., J. M. G., J. L. M., A. F., J.M.. M.. Mater. 165 (1997) 352.
68 G. J. S., J. H. J. D., M. A. A. B., H. J. M. S., W. J. M. d. J., Journal of Applied Physics 86 9 (1999) 5141-5145.
69 A. H. M., The Physical Principles of Magnetism, Wiley, New York, 1965.
70 G. C. H., Journal of Magnetism and Magnetic Materials, 200 (1999) 373-391
71 P. L. C., J. K. C., C. T. K., F. M. P., Diamond & Related Materials 13 (2004) 1949–1953
72 A. S., M. G., Materials Chemistry and Physics 91 (2005) 417–423
73 C. L. X., H. L., G. Y. Z., H. L. L., Applied Surface Science 253 (2006) 1399–1403 74 S. Y., H. Z., D. Y., Z. J. S. T., Y. D., Journal of Magnetism and Magnetic Materials 222 (2000) 97-100
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top