跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈靜慧
研究生(外文):Shen, Ching-Hui
論文名稱:探討腫瘤壞死因子α在嗎啡耐藥性所扮演的角色:腫瘤壞死因子α抑制劑Etanercept的作用
論文名稱(外文):The Role of TNF-α in Morphine Tolerance: Effect of TNF-α inhibitor Etanercept and its therapeutic implication
指導教授:汪志雄汪志雄引用關係
指導教授(外文):Wong, Chih-Shung
口試委員:陶寶綠司徒惠康孫維仁戴元基汪志雄
口試委員(外文):Tao, Pao-LuhSytwu, Huey-KangSun, Wei-ZenDay, Yuan-JiWong, Chih-Shung
口試日期:100/10/24
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:83
中文關鍵詞:恩博嗎啡耐藥性小神經膠質細胞
外文關鍵詞:etanerceptmorphine tolerancemicroglia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
嗎啡是強而有效的止痛劑,在臨床上使用已久,但長期使用卻會產生耐藥性。有兩類機轉用來解釋嗎啡耐藥性;一為系統之間之機制(within system),指與嗎啡受體訊息傳遞途徑有關。目前的研究顯示包括受體數目的減少和受體-G蛋白之失聯,與乙型休止素 (β-arrestin) 均參與類鴉片受體去敏感性及內化有關。而系統之間之機制 (between system) 則是包括減少麩胺酸轉運蛋白,增加細胞外液中的神經傳導素麩胺酸導致活化麩胺酸傳導系統及神經性發炎,而降低嗎啡止痛效果。腫瘤壞死因子-α是個很重要的炎性前驅物質,可活化脊髓神經膠質細胞,引發神經發炎反應。很多研究顯示嗎啡耐受性與痛覺過敏,在脊髓神經膠質細胞活化反應增強和麩胺酸神經毒性方面非常相似。而腫瘤壞死因子-α不僅可調控麩胺酸轉運蛋白,並且可增加細胞膜上AMPA受器,改變麩胺酸在突觸間的傳導。我們希望能以抗發炎和減緩麩氨酸在突觸間的傳導的觀點,提供另一種治療嗎啡耐藥性的選擇。在本論文的研究中,我們使用雄性Wistar大白鼠為實驗動物,利用椎管內給予嗎啡 (15 μg/h) 持續5天產生嗎啡耐藥性。在第五天,剪斷微滲透幫浦的連接椎管後,選擇給予恩博 (etanercept 5 μg, 25 μg and 50 μg/10 μl) 或是生理食鹽水 (10 μl),三小時後再以嗎啡15μg椎管內注射來測試嗎啡之止痛效果。在產生嗎啡耐藥性的大鼠,我們發現給予50 μg恩博 (etanercept) 治療、嗎啡仍可明顯產生止痛效果。在嗎啡耐藥性大鼠的脊髓背角,即時定量聚合酶反應結果顯示腫瘤壞死因子-α之mRNA的表現增加2.5倍、而細胞激素IL-1β與IL-6分別增加13及 111倍。這些發炎性細胞激素的表現均可被50 μg恩博 (etanercept) 所阻斷。免疫組織染色分析同樣發現50 μg恩博 (etanercept) 可壓制小神經膠質細胞的神經發炎反應和細胞激素 (TNF-α, IL-1β和IL-6) 的表現。在嗎啡耐藥性大鼠,西方墨點實驗指出、給予50 μg etanercept不只可以防止在嗎啡耐藥鼠麩胺酸轉運蛋白 (GLAST, GLT-1及EAAC1) 的含量均降低,且可抑制誘發細胞膜上AMPA- 及NMDA-receptor subunits的表現。總之,使用恩博(etanercept; 腫瘤壞死因子α-抑制劑)阻斷TNF-α的傳導,可減緩嗎啡耐藥性的產生。其機轉來自回復神經膠質細胞膜上麩胺酸轉運蛋白含量、抑制細胞膜上AMPA- 及NMDA-receptor subunits增加及壓抑小神經膠質細胞的活化和細胞激素的表現。這些結果顯示恩博 (etanercept) 在臨床疼痛處置上,可做為嗎啡耐藥性的輔助療法,延續嗎啡的止痛效果,特別是神經性疼痛需要長期嗎啡治療的病人。
Opioids are potent and effective analgesics; they are widely used in clinical pain management. Long-term exposure to morphine leads to analgesic tolerance. There are two possible mechanisms for drug tolerance; within-system and between-system adaptation. Recent investigations on the mechanisms of within-opioid system adaptation include downregulation of G-protein coupled receptors, G protein uncoupling, and β-arrestin binding and internalization of opioid receptors. Studies of between-system adaptation have focused on glutamatergic synaptic transmission via downregulation of glutamate transporters (GTs), increased glutamate level and activation of NMDA receptor function, and glia activation with increasing of proinflammatory cytokine expression; which reduced antinociceptive effect of morphine. Tumor necrosis factor-α (TNF-α) has been demonstrated to correlate with neuronal plasticity via activating spinal glia cells and enhancing glutamatergic transmission. The present study examined the mechanism of etanercept, a TNF-α inhibitor on morphine tolerance in male Wistar rats. Intrathecal morphine infusion (15 μg/h) for 5 days was used for tolerance induction. On day 5, either etanercept (5 μg, 25 μg and 50 μg/10 μl) or saline (10 μl) was injected after discontinued morphine infusion, and three hours later morphine (10 μg/10 μl, i.t) was given for tail-flick latency measurement. We found that pretreatment with etanercept (50 μg) caused a significant antinociceptive effect of morphine in morphine-tolerant rats. The real-time PCR data showed that the expression of TNF-α mRNA was increased by 2.5 fold, IL-1β mRNA increased by 13 fold and IL-6 mRNA by 111 fold in the dorsal horn of morphine-tolerant rat spinal cords. The increase in TNF-α, IL-1β and IL-6 mRNA expression was blocked by 50 μg etanercept pretreatment. The immunohistochemistry analysis revealed that 50 μg etanercept suppressed the proinflammatory cytokines expression and neuroinflammation in the microglia. In addition, Western blotting indicated that etanercept downregulated membrane glutamate transporters (GTs), EAAC1, GLT1 and GLAST in morphine tolerant rats. Etanercept also inhibited the upregulation of surface AMPA- and NMDA-receptor subunits, including GluR1/GluR2 and NR1/NR2A. In summary, blockade of TNF-α signaling attenuated morphine tolerance. This effect may be mediated by restoration of glial membrane GTs expression, inhibition of surface AMPA- and NMDA-receptor upregulation, and suppression of microglial activation and proinflammatory cytokine expression. The results suggest that etanercept could also be an adjuvant therapy for morphine tolerance, which extends the effectiveness of opioids in clinical pain management.
Contents
Chinese abstract -------------------------------------------------------------------- 1
English abstract -------------------------------------------------------------------- 3
Abbreviations -------------------------------------------------------------------- 5
Text contents
1.0 Background -------------------------------------------------------------------- 8
1.1 Morphine tolerance ----------------------------------------------------------- 8
1.11 Within system of morphine tolerance ------------------------------------------ 9
I. Modulation of adenylyl cyclase and cAMP-dependent PKA activation
II. Uncoupling of G protein
III. β-arrestin and opioid receptor internalization
IV. μ-opioid receptor oligomerization
1.12 Between system of morphine tolerance ------------------------------------------ 11
I. Neuroinflammation
II. Glutamatergic system
III. Cholecystokinin
IV. Apoptosis
1.2 TNF-α and Etancecpt ----------------------------------------------------------- 17
2.0 Materials and Methods ----------------------------------------------------------- 20
2.1 Animal preparation and intrathecal drug delivery --------------------------------- 20
2.2 Construction of the intrathecal catheter --------------------------------- 20
2.3 Nociception test ----------------------------------------------------------- 21
2.4 Spinal cord preparation -------------------------------------------------- 22
2.5 Quantitative real-time PCR -------------------------------------------------- 23
2.6 Immunocytochemistry and image analysis ----------------------------------------- 24
2.7 Preparation of spinal cord plasma membrane, cytosolic, and nuclear fractions for
Western blotting analysis -------------------------------------------------- 25
2.8 Western blotting analysis -------------------------------------------------- 26
2.9 Data and statistical analysis -------------------------------------------------- 27
3.0 Intrathecal etanercept partially restores morphine’s antinociception in
morphine-tolerant rats via attenuation of neuroinflammation and glutamatergic
transmission -------------------------------------------------------------------- 29
3.1 Introduction -------------------------------------------------------------------- 29
3.2 Materials and Methods ----------------------------------------------------------- 29
3.3 Results -------------------------------------------------------------------- 30
I. Neuroinflammation ----------------------------------------------------------- 30
II. Glutamatergic transmission -------------------------------------------------- 36
3.4 Discussion ------------------------------------------------------------------- 45
I. Neuroinflammation ---------------------------------------------------- ------ 45
II. Glutamatergic transmission ------------------------------------------------- 50
4.0 Conclusion and future work ------------------------------------------------- 59
5.0 References ------------------------------------------------------------------- 62
Appendix

Allison, D.W., Gelfand, V.I., Spector, I., and Craig, A.M. (1998). Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18, 2423-2436.
Aloisi, F. (2001). Immune function of microglia. Glia 36, 165-179.
Baker, S.J., and Reddy, E.P. (1996). Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12, 1-9.
Baud, V., and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11, 372-377.
Beal, M.F. (1992). Mechanisms of excitotoxicity in neurologic diseases. Faseb J 6, 3338-3344.
Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic strength by glial TNFalpha. Science 295, 2282-2285.
Bennett, G.J. (2000). Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manage 19, S2-6.
Benveniste, E.N., and Benos, D.J. (1995). TNF-alpha- and IFN-gamma-mediated signal transduction pathways: effects on glial cell gene expression and function. Faseb J 9, 1577-1584.
Bethea, J.R., Castro, M., Keane, R.W., Lee, T.T., Dietrich, W.D., and Yezierski, R.P. (1998). Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18, 3251-3260.
Beutler, B., and van Huffel, C. (1994). Unraveling function in the TNF ligand and receptor families. Science 264, 667-668.
Bohn, L.M., Gainetdinov, R.R., Lin, F.T., Lefkowitz, R.J., and Caron, M.G. (2000). Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720-723.
Bohn, L.M., Lefkowitz, R.J., and Caron, M.G. (2002). Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J Neurosci 22, 10494-10500.
Bohn, L.M., Lefkowitz, R.J., Gainetdinov, R.R., Peppel, K., Caron, M.G., and Lin, F.T. (1999). Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286, 2495-2498.
Chakrabarti, S., Oppermann, M., and Gintzler, A.R. (2001). Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling. Proc Natl Acad Sci U S A 98, 4209-4214.
Chan, F.K., Chun, H.J., Zheng, L., Siegel, R.M., Bui, K.L., and Lenardo, M.J. (2000). A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351-2354.
Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464.
Claing, A., Laporte, S.A., Caron, M.G., and Lefkowitz, R.J. (2002). Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66, 61-79.
Coderre, T.J., Katz, J., Vaccarino, A.L., and Melzack, R. (1993). Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52, 259-285.
Dalton, G.D., Smith, F.L., Smith, P.A., and Dewey, W.L. (2005). Alterations in brain Protein Kinase A activity and reversal of morphine tolerance by two fragments of native Protein Kinase A inhibitor peptide (PKI). Neuropharmacology 48, 648-657.
Danbolt, N.C. (2001). Glutamate uptake. Prog Neurobiol 65, 1-105.
del Zoppo, G., Ginis, I., Hallenbeck, J.M., Iadecola, C., Wang, X., and Feuerstein, G.Z. (2000). Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10, 95-112.
DeLeo, J.A., Colburn, R.W., Nichols, M., and Malhotra, A. (1996). Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interferon Cytokine Res 16, 695-700.
Deng, G.M., Zheng, L., Chan, F.K., and Lenardo, M. (2005). Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med 11, 1066-1072.
Dockray, G.J. (1976). Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264, 568-570.
Duttaroy, A., and Yoburn, B.C. (1995). The effect of intrinsic efficacy on opioid tolerance. Anesthesiology 82, 1226-1236.
Emch, G.S., Hermann, G.E., and Rogers, R.C. (2000). TNF-alpha activates solitary nucleus neurons responsive to gastric distension. Am J Physiol Gastrointest Liver Physiol 279, G582-586.
Fields, H.L., Heinricher, M.M., and Mason, P. (1991). Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14, 219-245.
Fine, S.M., Angel, R.A., Perry, S.W., Epstein, L.G., Rothstein, J.D., Dewhurst, S., and Gelbard, H.A. (1996). Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271, 15303-15306.
Finn, A.K., and Whistler, J.L. (2001). Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32, 829-839.
Forrest, D., Yuzaki, M., Soares, H.D., Ng, L., Luk, D.C., Sheng, M., Stewart, C.L., Morgan, J.I., Connor, J.A., and Curran, T. (1994). Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13, 325-338.
Gegelashvili, G., and Schousboe, A. (1997). High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52, 6-15.
Grassi, F., Mileo, A.M., Monaco, L., Punturieri, A., Santoni, A., and Eusebi, F. (1994). TNF-alpha increases the frequency of spontaneous miniature synaptic currents in cultured rat hippocampal neurons. Brain Res 659, 226-230.
Gul, H., Yildiz, O., Dogrul, A., Yesilyurt, O., and Isimer, A. (2000). The interaction between IL-1beta and morphine: possible mechanism of the deficiency of morphine-induced analgesia in diabetic mice. Pain 89, 39-45.
Hallenbeck, J.M. (2002). The many faces of tumor necrosis factor in stroke. Nat Med 8, 1363-1368.
Harada, H., Ueda, H., Katada, T., Ui, M., and Satoh, M. (1990). Phosphorylated mu-opioid receptor purified from rat brains lacks functional coupling with Gi1, a GTP-binding protein in reconstituted lipid vesicles. Neurosci Lett 113, 47-49.
He, L., Fong, J., von Zastrow, M., and Whistler, J.L. (2002). Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108, 271-282.
Heinricher, M.M., McGaraughty, S., and Tortorici, V. (2001). Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 85, 280-286.
Hu, S., Sheng, W.S., Lokensgard, J.R., and Peterson, P.K. (2002). Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42, 829-836.
Hutchinson, M.R., Loram, L.C., Zhang, Y., Shridhar, M., Rezvani, N., Berkelhammer, D., Phipps, S., Foster, P.S., Landgraf, K., Falke, J.J., et al. (2010). Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience 168, 551-563.
Johnston, I.N., Milligan, E.D., Wieseler-Frank, J., Frank, M.G., Zapata, V., Campisi, J., Langer, S., Martin, D., Green, P., Fleshner, M., et al. (2004). A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24, 7353-7365.
Jordan, B.A., and Devi, L.A. (1999). G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697-700.
Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H., and Baeuerle, P.A. (1994). Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14, 3981-3992.
Kaul, M., Garden, G.A., and Lipton, S.A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988-994.
Kim, H.J., Rowe, M., Ren, M., Hong, J.S., Chen, P.S., and Chuang, D.M. (2007). Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321, 892-901.
Kim, J.M., Oh, Y.K., Lee, J.H., Im, D.Y., Kim, Y.J., Youn, J., Lee, C.H., Son, H., Lee, Y.S., Park, J.Y., et al. (2005). Induction of proinflammatory mediators requires activation of the TRAF, NIK, IKK and NF-kappaB signal transduction pathway in astrocytes infected with Escherichia coli. Clin Exp Immunol 140, 450-460.
Koch, T., Schulz, S., Schroder, H., Wolf, R., Raulf, E., and Hollt, V. (1998). Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 273, 13652-13657.
Koch, T., Widera, A., Bartzsch, K., Schulz, S., Brandenburg, L.O., Wundrack, N., Beyer, A., Grecksch, G., and Hollt, V. (2005). Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67, 280-287.
Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F., and Kollias, G. (1999). Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387-398.
Koob, G.F., and Bloom, F.E. (1988). Cellular and molecular mechanisms of drug dependence. Science 242, 715-723.
Korn, T., Magnus, T., and Jung, S. (2005). Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. Faseb J 19, 1878-1880.
Laabich, A., Li, G., and Cooper, N.G. (2001). Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res 91, 34-42.
Lilienbaum, A., and Israel, A. (2003). From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 23, 2680-2698.
Lim, G., Wang, S., Lim, J.A., and Mao, J. (2005a). Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis. Neurosci Lett 389, 104-108.
Lim, G., Wang, S., and Mao, J. (2005b). cAMP and protein kinase A contribute to the downregulation of spinal glutamate transporters after chronic morphine. Neurosci Lett 376, 9-13.
Lim, G., Wang, S., Zeng, Q., Sung, B., Yang, L., and Mao, J. (2005c). Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor. J Neurosci 25, 11145-11154.
Lin, H.Y., Chen, C.S., Lin, S.P., Weng, J.R., and Chen, C.S. (2006). Targeting histone deacetylase in cancer therapy. Med Res Rev 26, 397-413.
Lipton, S.A., and Rosenberg, P.A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330, 613-622.
Liu, J.G., and Anand, K.J. (2001). Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev 38, 1-19.
Loh, H.H., Tao, P.L., and Smith, A.P. (1988). Role of receptor regulation in opioid tolerance mechanisms. Synapse 2, 457-462.
Ma, W., and Bisby, M.A. (1998). Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res 797, 243-254.
Maini, R.N., Breedveld, F.C., Kalden, J.R., Smolen, J.S., Davis, D., Macfarlane, J.D., Antoni, C., Leeb, B., Elliott, M.J., Woody, J.N., et al. (1998). Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41, 1552-1563.
Manning, B.H., Mao, J., Frenk, H., Price, D.D., and Mayer, D.J. (1996). Continuous co-administration of dextromethorphan or MK-801 with morphine: attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance. Pain 67, 79-88.
Mao, J., Price, D.D., and Mayer, D.J. (1994). Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 14, 2301-2312.
Mao, J., Price, D.D., and Mayer, D.J. (1995). Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 62, 259-274.
Mao, J., Sung, B., Ji, R.R., and Lim, G. (2002a). Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci 22, 8312-8323.
Mao, J., Sung, B., Ji, R.R., and Lim, G. (2002b). Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22, 7650-7661.
Marzo-Ortega, H., McGonagle, D., O'Connor, P., and Emery, P. (2001). Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum 44, 2112-2117.
Mayer, D.J., Mao, J., Holt, J., and Price, D.D. (1999). Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A 96, 7731-7736.
Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Jr., Baron, P., Villalba, M., Ferrari, D., and Rossi, F. (1995). Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374, 647-650.
Minucci, S., and Pelicci, P.G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6, 38-51.
Morgan, M.M., Gold, M.S., Liebeskind, J.C., and Stein, C. (1991). Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Brain Res 545, 17-23.
Oliet, S.H., Piet, R., and Poulain, D.A. (2001). Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923-926.
Olsson, R.A., and Romansky, M.J. (1962). Staphylococcal tricuspid endocarditis in heroin addicts. Ann Intern Med 57, 755-762.
Otterbein, L.E., Bach, F.H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R.J., Flavell, R.A., and Choi, A.M. (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6, 422-428.
Persson, M., Brantefjord, M., Hansson, E., and Ronnback, L. (2005). Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51, 111-120.
Pimentel-Muinos, F.X., and Seed, B. (1999). Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 11, 783-793.
Pober, J.S., and Cotran, R.S. (1990). Cytokines and endothelial cell biology. Physiol Rev 70, 427-451.
Porreca, F., Ossipov, M.H., and Gebhart, G.F. (2002). Chronic pain and medullary descending facilitation. Trends Neurosci 25, 319-325.
Raghavendra, V., Rutkowski, M.D., and DeLeo, J.A. (2002). The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22, 9980-9989.
Raghavendra, V., Tanga, F.Y., and DeLeo, J.A. (2004). Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29, 327-334.
Reeve, A.J., Patel, S., Fox, A., Walker, K., and Urban, L. (2000). Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 4, 247-257.
Ross, J. (1996). Control of messenger RNA stability in higher eukaryotes. Trends Genet 12, 171-175.
Ruminy, P., Gangneux, C., Claeyssens, S., Scotte, M., Daveau, M., and Salier, J.P. (2001). Gene transcription in hepatocytes during the acute phase of a systemic inflammation: from transcription factors to target genes. Inflamm Res 50, 383-390.
Schlag, B.D., Vondrasek, J.R., Munir, M., Kalandadze, A., Zelenaia, O.A., Rothstein, J.D., and Robinson, M.B. (1998). Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53, 355-369.
Scott, D.L., and Kingsley, G.H. (2006). Tumor necrosis factor inhibitors for rheumatoid arthritis. N Engl J Med 355, 704-712.
Shen, C.H., Tsai, R.Y., Shih, M.S., Lin, S.L., Tai, Y.H., Chien, C.C., and Wong, C.S. (2011). Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 112, 454-459.
Shimoyama, N., Shimoyama, M., Davis, A.M., Monaghan, D.T., and Inturrisi, C.E. (2005). An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. J Pharmacol Exp Ther 312, 834-840.
Singhal, P.C., Sharma, P., Kapasi, A.A., Reddy, K., Franki, N., and Gibbons, N. (1998). Morphine enhances macrophage apoptosis. J Immunol 160, 1886-1893.
Siren, A.L., McCarron, R., Wang, L., Garcia-Pinto, P., Ruetzler, C., Martin, D., and Hallenbeck, J.M. (2001). Proinflammatory cytokine expression contributes to brain injury provoked by chronic monocyte activation. Mol Med 7, 219-229.
Sirenko, O., Bocker, U., Morris, J.S., Haskill, J.S., and Watson, J.M. (2002). IL-1 beta transcript stability in monocytes is linked to cytoskeletal reorganization and the availability of mRNA degradation factors. Immunol Cell Biol 80, 328-339.
Sitcheran, R., Gupta, P., Fisher, P.B., and Baldwin, A.S. (2005). Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. Embo J 24, 510-520.
Smith, F.L., Javed, R.R., Elzey, M.J., and Dewey, W.L. (2003). The expression of a high level of morphine antinociceptive tolerance in mice involves both PKC and PKA. Brain Res 985, 78-88.
Song, P., and Zhao, Z.Q. (2001). The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39, 281-286.
Stanulis, E.D., Jordan, S.D., Rosecrans, J.A., and Holsapple, M.P. (1997). Disruption of Th1/Th2 cytokine balance by cocaine is mediated by corticosterone. Immunopharmacology 37, 25-33.
Stefano, G.B. (1998). Autoimmunovascular regulation: morphine and anandamide and ancondamide stimulated nitric oxide release. J Neuroimmunol 83, 70-76.
Stellwagen, D., Beattie, E.C., Seo, J.Y., and Malenka, R.C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25, 3219-3228.
Tai, Y.H., Tsai, R.Y., Wang, Y.H., Cherng, C.H., Tao, P.L., Liu, T.M., and Wong, C.S. (2008). Amitriptyline induces nuclear transcription factor-kappaB-dependent glutamate transporter upregulation in chronic morphine-infused rats. Neuroscience 153, 823-831.
Tai, Y.H., Wang, Y.H., Tsai, R.Y., Wang, J.J., Tao, P.L., Liu, T.M., Wang, Y.C., and Wong, C.S. (2007). Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats. Pain 129, 343-354.
Tai, Y.H., Wang, Y.H., Wang, J.J., Tao, P.L., Tung, C.S., and Wong, C.S. (2006). Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain 124, 77-86.
Tamion, F., Richard, V., Bonmarchand, G., Leroy, J., Lebreton, J.P., and Thuillez, C. (2001). Induction of heme-oxygenase-1 prevents the systemic responses to hemorrhagic shock. Am J Respir Crit Care Med 164, 1933-1938.
Tartaglia, L.A., Weber, R.F., Figari, I.S., Reynolds, C., Palladino, M.A., Jr., and Goeddel, D.V. (1991). The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci U S A 88, 9292-9296.
Taylor, D.L., Jones, F., Kubota, E.S., and Pocock, J.M. (2005). Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25, 2952-2964.
Taylor, G.A., Carballo, E., Lee, D.M., Lai, W.S., Thompson, M.J., Patel, D.D., Schenkman, D.I., Gilkeson, G.S., Broxmeyer, H.E., Haynes, B.F., et al. (1996). A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445-454.
Tobinick, E.L., and Gross, H. (2008). Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration. J Neuroinflammation 5, 2.
Todhunter, P.G., Kincaid, S.A., Todhunter, R.J., Kammermann, J.R., Johnstone, B., Baird, A.N., Hanson, R.R., Wright, J.M., Lin, H.C., and Purohit, R.C. (1996). Immunohistochemical analysis of an equine model of synovitis-induced arthritis. Am J Vet Res 57, 1080-1093.
Trujillo, K.A., and Akil, H. (1991). Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85-87.
Trujillo, K.A., and Akil, H. (1995). Excitatory amino acids and drugs of abuse: a role for N-methyl-D-aspartate receptors in drug tolerance, sensitization and physical dependence. Drug Alcohol Depend 38, 139-154.
Urban, M.O., and Gebhart, G.F. (1998). The glutamate synapse: a target in the pharmacological management of hyperalgesic pain states. Prog Brain Res 116, 407-420.
Venters, H.D., Tang, Q., Liu, Q., VanHoy, R.W., Dantzer, R., and Kelley, K.W. (1999). A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc Natl Acad Sci U S A 96, 9879-9884.
Vollgraf, U., Wegner, M., and Richter-Landsberg, C. (1999). Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes. J Neurochem 73, 2501-2509.
von Zastrow, M., Svingos, A., Haberstock-Debic, H., and Evans, C. (2003). Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs. Curr Opin Neurobiol 13, 348-353.
Wajant, H., and Scheurich, P. (2001). Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell Biol 33, 19-32.
Wang, S., Lim, G., Yang, L., Sung, B., and Mao, J. (2006). Downregulation of spinal glutamate transporter EAAC1 following nerve injury is regulated by central glucocorticoid receptors in rats. Pain 120, 78-85.
Wang, Z., Ma, W., Chabot, J.G., and Quirion, R. (2009). Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. Faseb J 23, 2576-2586.
Wang, Z., and Sadee, W. (2000). Tolerance to morphine at the mu-opioid receptor differentially induced by cAMP-dependent protein kinase activation and morphine. Eur J Pharmacol 389, 165-171.
Washburn, M.S., Numberger, M., Zhang, S., and Dingledine, R. (1997). Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17, 9393-9406.
Watkins, L.R., Kinscheck, I.B., and Mayer, D.J. (1984). Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science 224, 395-396.
Wen, Z.H., Chang, Y.C., Cherng, C.H., Wang, J.J., Tao, P.L., and Wong, C.S. (2004). Increasing of intrathecal CSF excitatory amino acids concentration following morphine challenge in morphine-tolerant rats. Brain Res 995, 253-259.
Wen, Z.H., Wu, G.J., Chang, Y.C., Wang, J.J., and Wong, C.S. (2005). Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience 133, 807-817.
Whistler, J.L., and von Zastrow, M. (1999). Dissociation of functional roles of dynamin in receptor-mediated endocytosis and mitogenic signal transduction. J Biol Chem 274, 24575-24578.
White, F.J., Hu, X.T., and Zhang, X.F. (1998). Neuroadaptations in nucleus accumbens neurons resulting from repeated cocaine administration. Adv Pharmacol 42, 1006-1009.
Wilson, J.A. (2008). Tumor necrosis factor alpha and colitis-associated colon cancer. N Engl J Med 358, 2733-2734.
Wong, C.S., Chang, Y.C., Yeh, C.C., Huang, G.S., and Cherng, C.H. (2002). Loss of intrathecal morphine analgesia in terminal cancer patients is associated with high levels of excitatory amino acids in the CSF. Can J Anaesth 49, 561-565.
Wu, C.T., Jao, S.W., Borel, C.O., Yeh, C.C., Li, C.Y., Lu, C.H., and Wong, C.S. (2004). The effect of epidural clonidine on perioperative cytokine response, postoperative pain, and bowel function in patients undergoing colorectal surgery. Anesth Analg 99, 502-509, table of contents.
Xie, J.Y., Herman, D.S., Stiller, C.O., Gardell, L.R., Ossipov, M.H., Lai, J., Porreca, F., and Vanderah, T.W. (2005). Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 25, 409-416.
Xu, N.J., Bao, L., Fan, H.P., Bao, G.B., Pu, L., Lu, Y.J., Wu, C.F., Zhang, X., and Pei, G. (2003). Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci 23, 4775-4784.
Yang, L., Wang, S., Sung, B., Lim, G., and Mao, J. (2008). Morphine induces ubiquitin-proteasome activity and glutamate transporter degradation. J Biol Chem 283, 21703-21713.
Yin, D., Mufson, R.A., Wang, R., and Shi, Y. (1999). Fas-mediated cell death promoted by opioids. Nature 397, 218.
Yu, Z., Cheng, G., Wen, X., Wu, G.D., Lee, W.T., and Pleasure, D. (2002). Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 11, 199-213.
Zampetaki, A., Zeng, L., Xiao, Q., Margariti, A., Hu, Y., and Xu, Q. (2007). Lacking cytokine production in ES cells and ES-cell-derived vascular cells stimulated by TNF-alpha is rescued by HDAC inhibitor trichostatin A. Am J Physiol Cell Physiol 293, C1226-1238.
Zhou, Y., Sun, Y.H., Zhang, Z.W., and Han, J.S. (1992). Accelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. Neuroreport 3, 1121-1123.
Zhou, Y., Sun, Y.H., Zhang, Z.W., and Han, J.S. (1993). Increased release of immunoreactive cholecystokinin octapeptide by morphine and potentiation of mu-opioid analgesia by CCKB receptor antagonist L-365,260 in rat spinal cord. Eur J Pharmacol 234, 147-154.
Zou, J.Y., and Crews, F.T. (2005). TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034, 11-24.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top