跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇信翰
研究生(外文):Su, Sin-Han
論文名稱:結合部分硝化與厭氧氨氧化程序於處理高氮光電廢水之應用
論文名稱(外文):Application of Simultaneous Partial Nitrification and Anammox Process for Treatment of High Strength Nitrogen Containing Opto-electronic
指導教授:林志高林志高引用關係
指導教授(外文):Lin, Jih-Gaw
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:70
中文關鍵詞:厭氧氨氧化部分硝化光電廢水
外文關鍵詞:Anammoxpartial nitrificationopto-electronic wastewater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究將部分硝化與厭氧氨氧化程序結合於單一反應槽內並針對處理兩股含有高濃度氮氮之光電廢水進行探討。此兩股光電廢水之主要特性略有不同,其分別為僅具有高濃度氨氮 (WW1) 與碳氮比為0.2 (WW2) 之廢水。為強化培養厭氧氨氧化菌之生長本研究於進流廢水中添加營養鹽與微量元素。WW1與WW2分別以18 L與2.5 L的序批次反應槽 (SBR-18 & SBR-2.5) 進行處理,並在16個月的實驗期間逐漸提升氮負荷。實驗結果顯示於SBR-18反應槽的最後階段總氮負荷最高可達到909 g -N m-3 d-1且平均總氮去除效率可達90% 並持續維持1個月。而在SBR-2.5反應槽中的最後階段,總氮負荷與COD負荷最高分別可達到428 g-N m-3 d-1與89 g-COD m-3 d-1且平均總氮去除效率與COD去除效率分別可達93% 與79%。最後藉由聚合酵素鏈鎖反應 (PCR) 之菌相鑑定進一步證實了SBR內共同存在了氨氧化菌與厭氧氨氧化菌且Candidatus Kuenenia stuttgartiensis為主要菌種之一。
Treatment of two optoelectronic industrial wastewaters (wastewater containing high ammonium concentration (WW1) and wastewater with C/N ratio of 0.2 (WW2)) were achieved using partial nitrification and Anammox processes in a single reactors. 18 L and 2.5 L lab scale sequencing batch reactors (SBR) were used to treat WW1 and WW2, respectively. Essential nutrients and trace elements were added in the influent wastewaters to support the Anammox growth. 18 L SBR (SBR-18) and 2.5 L SBR (SBR-2.5) were run for over 16 months in different stages. Nitrogen loading rate (NLR) was gradually increased from 10 g-N m-3 d-1 to 909 g-N m-3 d-1 and 16 g-N m-3 d-1 to 230 g-N m-3 d-1 in SBR-18 and SBR-2.5, respectively.
The SBR-18 was successfully run about 1 month (7 times of HRT) to treat WW1 without dilution i.e NLR of 0.9 g-N m-3 d-1. The average TN removal was 90% in the high NLR in SBR-18. In the case of SBR-2.5, the system successfully treated 89 g-COD m-3 d-1 and 428 g g-N m-3 d-1, respectively, with 79% and 93% of COD and TN removal efficiencies in later stages. Presence of ammonia oxidizing bacteria (AOB) and Anammox bacteria were confirmed by polymerase chain reaction (PCR) in the SBRs. PCR results also indicated that Candidatus Kuenenia stuttgartiensis was one of the dominant species in both SBRs.

中文摘要 i
ABSTRACT ii
誌謝 iii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Nitrogen cycle 3
2.2 Biological Nitrogen removal processes 7
2.2.1 Conventional Nitrification-Denitrification 7
2.2.2 Innovation technology – Anammox (ANaerobic AMMonium OXidation) 8
2.2.3 Single reactor High activity Ammonia Removal over Nitrite (SHARON) 13
2.2.4 The combination of partial nitrification and Anammox in single reactor 14
Chapter 3 Materials and methods 16
3.1 Sequencing batch reactor with carriers (SBR-18) for treating ammonium-rich wastewater 16
3.1.1 Seed sludge and feeding media used in SBR-18 16
3.1.2 Experimental set-up and reactor system 18
3.1.3 Measurements in SBR-18 21
3.2 Sequencing batch reactor (SBR-2.5) for treating the wastewater with low C/N ratio 22
3.2.1 Seed sludge and feeding media for SBR-2.5 22
3.2.1 Experimental set-up and reactor system 24
3.2.2 Measurements in SBR-2.5 26
3.3 Analytical methods 27
3.4 Biological activity analyses 28
3.4.1 Specific Anammox activity (SAA) test 28
3.4.2 Nitrate Uptake Rate (NUR) test 30
3.5 Polymerase chain reaction (PCR) 30
Chapter 4 Results and Discussion 32
4.1 Sequencing batch reactor with carriers (SBR-18) for treating ammonium-rich wastewater 32
4.1.1 Characteristics of opto-electronic industrial wastewater 32
4.1.2 Nitrogen removal performance 32
4.1.3 Results from PCR 42
4.2 Sequencing batch reactor (SBR-2.5) for treating the wastewater with low C/N ratio 45
4.2.1 Nitrogen removal performance 46
4.2.1 Operational parameters for pH, Alkalinity, MLSS and MLVSS 55
4.2.2 COD removal from opto-electronic industrial wastewater 57
4.2.1 Result from NUR 59
4.2.2 Results from PCR 60
Chapter 5 Conclusion 62
REFERENCE 64
[1] Mulder, A., Vandegraaf, A.A., Robertson, L.A. and Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. Fems Microbiology Ecology, 16, 177-183.
[2] Siegrist, H., Salzgeber, D., Eugster, J., Joss, A., 2008. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science & Technology, 57, 383-388.
[3] Rick W. Y and M.T Stuart., 2001. Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion Microbiology. 4, 307-312.
[4] Pidwirny, M., 2006. "The Nitrogen Cycle". Fundamentals of Physical Geography, 2nd Edition. Date Viewed.
[5] Galloway, J.N and Cowling, E. B., 2002. Reactive nitrogen and the world: 200 years of change. Ambio. 31, 64-71.
[6] Camargo, J. A and Alonso, A., 2006. Ecological and toxiclolgical effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. International, 32, 831-849.
[7] Ahn,Y. H., 2006. Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry. 41, 1709-1721
[8] US EPA. Process design manual of nitrogen control. EPA 625/r-93/010, Cincinnati, Ohio; 1993.
[9] Mateju, V., Cizinska, S., Krejei, J. and Janoch, T., 1992. Biological water denitrification - A review. Enzyme Microb. Technol. 14, 170-183.
[10] Choi, C., Lee, J. Lee, K. and Kim, M., 2008. The effects on operations of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane
65
bioreactor (IAMBR). Bioresource Technology. 99, 5397-5401.
[11] Broda, E., 1977. Two kinds of lithotrophs missing in nature. Z. Alg. Mikrobiol. 17, 491-493
[12] Van de Graaf, A. A., Mulder, A., de Bruijn, P., Jetten, M. S. M., Robertson, L. A., Kuenen, J. G., 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microb. 61, 1246-1251
[13] Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M. and Kuenen, J. G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiol-Uk 142, 2187-2196 (1996).
[14] Strous, M., Heijnen JJ, Kuenen JG, Jetten M. S. M., 1998. The sequencing batch reactor as powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50, 589-596
[15] Jetten, M. S. M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., Strous, M., 2001. Current Opinion in Biotechnology. 12, 283-288.
[16] Dosta, J., Fernandez, I., Vazquez-Padin, J.R., Mosquera-Corral, A., Campos, J.L., Mata-Alvarez, J. and Mendez, R.. 2008. Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials 154, 688-693.
[17] Strous, M., Kuenen, J. G., Jetten, M. S. M., 1999. Key Physiology of Anaerobic Ammonium Oxidation. Appl. Environ. Microbiology, 65, 3248-3250.
[18] Dapena-Mora, A., Fernandez, I., Campos, J. L., Mosquera-Corral., Mendez, R., Jetten, M. S. M., 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology. 40, 859-865
[19] Fernandez, I., Dosta, J., Fajardo, C., Campos, J, L.,Mosquera-Corral., Mendez, R.,
66
2012. Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management 95 170-174.
[20] Jaroszynski, L.W., Cicek, N., Sparling, R., Oleszkiewicz, J. A., 2011. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors. Bioresource Technology 102, 7051-7056
[21] Jetten, M. S. M., Strous, M., van de Pas-Schoonen, K. T., Schalk, J., van Dongen, U. G. J. M. van de Graaf, A. A., Logemann, S., Muyzer, G., van Loosdrecht, M. C. M., Kuenen, J. G., 1998. The anaerobic oxidation of ammonium. EEMS Microbiology Reviews 22, 421-437.
[22] Fux, C., Marchesi, V., Brunner, I., Siegrist, H., 2004. Anaerobic ammonium oxidation of ammonium-rich waste streams in fixed-bed reactors. Water Science and Technology. 49, 77-82.
[23] Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ., 1998. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Science Technology 37, 135- 142.
[24] Blackburne, R., Yuan, Z. and Keller, J., 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation. 19, 303-312.
[25] Anthonisen, A. C., Loehr, R. C., Parkasam, T. B. S., Srinath, E. G., 1976. Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation,Vol. 48, No. 5, 835-852
[26] Van der Star W.R.L., Wiebe R. Abma., Dennis Blommers., Jan-Willem Mulder., Takaaki Tokutomi., Marc Strous., Cristian Picioreanu., Mark C.M., van Loosdrecht., 2007. Startup of reactors for anoxic ammonium oxidation:
67
Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41, 4149-4163.
[27] Sliekers, A.O., Derwort, N., Campos Gomez, J.L., Strous, M., Kuenen, J.G., M.S.M, Jetten., 2002. Completely autotrophic ammonia removal over nitrite in one reactor. Water Res. 36, 2475-2482.
[28] Third, K.A., Sliekers, A.O., Kuenen, J.G., Jetten, M.S.M., 2001. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24, 588-596.
[29] Pynaert, K., Smets , B.F., Beheydy, D., Verstraete., 2004. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ.
[30] Furukawa K., Lieu P.K., Tokitoh H., Fuji T., 2005. Development of single-stage nitrogen removal using anammox and partial nitration (SNAP) and its treatment performances. Water Sci. Technol. 53, 83-90.
[31] Third, K.A., Paxmid, M., Strous, M., Jetten, M. S. M., Cord-Ruwisch, R., 2005. Treatment of nitrogen-rich wastewater using partial nitrification and Anammox in the CANON process. Water Science & Technology, 52, 47-54.
[32] Sliekers, A.O., Third, K. A., Abma, W., Kuenen, J. G., Jetten, M. S. M., 2003. CANON and Anammox in a gas-lift reactor. FFMS Microbiol Lett. 218, 339-344.
[33] Cho, S., Fujii, N., Lee, T., Okabe, S., 2011. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technology. 102, 652-659.
[34] Pynaert, K., Smets, B.F., Wyffels, S., Beheydt, D., Siciliano, S.D., Verstraete, W., 2003. Characterization of an autotrophic nitrogen - removing biofilm from a highly
68
loaded lab - scale rotation biological contactor. Appl. Environ. Microbiol. 69, 3626-3635.
[35] Joss, A., Salzgebe, D., Eugster, J., Konig, R.,Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., Siegrist, H., 2009. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ. Sci. Technol. 43, 5301 - 5306
[36] Wett, B., 2006. Solved upscaling problems for implementing deammonification of rejection water. Water Science & Technology. 53, 121-128.
[37] Nyhuis, G., Stadler, V. Wett, B., 2006. Successful start-up of the first Swiss DEMON-plant for deammonification of reject water, 6th Aachen Conference on N-return Load, Aachen, Germany.
[38] Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Jetten, M.S.M. and Strous, M., 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microb. Rev., 27, 481-492.
[39] Thole, D., Cornelius, A., Rosenwinkel, K.H., 2005. Grostechnische Erfahrungen zur Deammonifikation von Schlammwasser auf der Klaranlage Hattingen (full scale experiences with deammonification of sludge liquor at Hattingen wastewater treatment plant). GWF. Wasser/Abwasser 146, 104-109.
[40] Lan, C. J., Kumar, M., Wang, C. C., Lin, J. G., 2010. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour Technolo. 102, 5514-5519.
[41] Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S., Lin, J.G., 2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J. Hazard. Mater. 175, 622-628.
69
[42] APHA., 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.
[43] Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704-4712.
[44] Braker, G., Fesefeldt, A., Witzel. K.P., 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirKnirK and nirSnirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64:3769-3775.
[45] Braker, G., Tiedje, J.M., 2003. Nitric Oxide Reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 69, 3476-3483
[46] Penton, C.R., Devol, A. H., Tiedje, J. M., 2006. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. 72, 6829-6832.
[47] Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J. W., Schleifer, K. H., Wagner, M., 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93-106.
[48] Li, M., Ford, T., Li, X., Gu, J.D., 2011. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria. Environmental Science and Technology 45, 3547-3553.
[49] Suzuki, M.T., Taylor, L.T., DeLong, E.F., 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental Microbiology 66, 4605-4614.
70
[50] Tsushima, I., Kindaichi, T., Okabe, S., 2007. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Research 41, 785-794.
[51] Strous, M., vanGerven, E., Kuenen, J.G. and Jetten, M., 1997. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Applied and Environmental Microbiology. 63, 2446-2448.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top