Avidan, A. A. and J. Yerushalmi, “Bed Expansion in High Velocity Fluidization”, Powder Technol., 32, 223-232 (1982).
Bakshi, B. R., H. Zhong, P. Jiang and L. S. Fan, “Analysis of Flow in Gas-Liquid Bubble Columns Using Multiresolution Methods”, Trans. Inst. Chem. Eng., 73, 608-614 (1995).
Bi, H. T., N. Ellis, I. A. Abba and J. R. Grace, “A State-of-the-Art Review of Gas-Solid Turbulent Fluidization”, Chem. Eng. Sci., 55, 4789-4825 (2000).
Bi, H. T. and L. S. Fan, “Existence of Turbulent Regime in Gas-Solid Fluidization”, AIChE J., 38, 297-301 (1992).
Bi, H. T. and J. R. Grace, “Effect of Measurement Method on Velocities Used to Demarcate the Onset of Turbulent Fluidization”, Chem. Eng. J., 57, 261-271 (1995).
Bi, H. T., J. R. Grace and K. S. Lim, “Transition from Bubbling to Turbulent Fluidization”, Ind. Eng. Chem. Res., 34, 4003-4008 (1995).
Brereton, C. M. H. and J. R. Grace, “The Transition to Turbulent Fluidization”, Trans. Inst. Chem. Eng., 70, 246-251 (1992).
Briens, L. A. and N. Ellis, “Hydrodynamics of Three-Phase Fluidized Bed Systems Examined by Statistical, Fractal, Chaos and Wavelet Analysis Methods”, Chem. Eng. Sci., 60, 6094-6106 (2005).
Briongos, J. V., J. M. Aragon and M. C. Palancar, “Phase Space Structure and Multi-Resolution Analysis of Gas-Solid Fluidized Bed Hydrodynamics: Part I: The EMD approach”, Chem. Eng. Sci., 61, 6963-6980 (2006).
Bruce, A. and H. Y. Gao, “Applied Wavelet Analysis with S-Plus”, pp. 11-67, Springer, New York, U. S. A. (1996).
Canada, G. S. and M. H. Mclaughlin, “Large Particle Fluidization and Heat Transfer at High Pressures”, AIChE Sym. Ser., 74 (176), 27-37 (1978).
Chehbouni, A., J. Chaouki, C. Guy, and D. Klvana, “Characterization of
the Flow Transition between Bubbling and Turbulent Fluidization”, Ind.
Eng. Chem. Res., 33, 1889-1898 (1994).
Cleveland, W. S., “Robust Locally Weighted Regression and Smoothing Scatterplots”, J. Am. Stat. Assoc., 74, 829-836 (1979).
Cleveland, W. S. and S. J. Devlin, “Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting”, J. Am. Stat. Assoc., 83, 596-610 (1988).
Ellis N., L. A. Briens, J. R. Grace, H. T. Bi and C. J. Lim “Characterization of Dynamic Behaviour in Gas–Solid Turbulent Fluidized Bed Using Chaos and Wavelet Analyses”, Chem. Eng. J., 96, 105-116 (2003).
Farge, M., Kevlahan, N., Perrier, V. and Goirand, E. “Wavelets and Turbulence”, Proc. IEEE, 84, 639-669 (1996).
Geldart, D., “Types of Gas Fluidization”, Powder Technol., 7, 285-292 (1973).
Geldart, D. and M. J. Rhodes, “From Minimum Fluidization to Pneumatic Transport-A Critical Review of the Hydrodynamics”, in “Circulating Fluidized Bed Technology”, P. Basu, Ed., pp. 21-31, Pergamon Press, New York, U. S. A. (1986).
Goswami, J. C. and A. K. Chan, “Fundamentals of Wavelets: Theory, Algorithms, and Applications”, pp. 141-265, John Wiley and Sons, New York, U. S. A. (1999).
Grace, J. R.,“Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions”, Can. J. Chem. Eng., 64, 353-363 (1987).
Guo, Q., G. Yue, T. Suda and J. Sato, “Flow Characteristics in a Bubbling Fluidized Bed at Elevated Temperature”, Chem. Eng. Proc., 42, 439-447 (2003).
Hashimoto, O., S. Mori, S. Hiraoka, I. Yamada, T. Kojima and KTsuji, “Heat Transfer to the Surface of Vertical Tubes in the Freeboard of a Turbulent Fluidized Bed”, Int. Chem. Eng., 30, 254-258 (1990).
Horio, M., H. Ishii and M. Nishimuro, “On the Nature of Turbulentand Fast Fluidized Beds”, Powder Technol., 70, 229-236 (1992).
Jin, Y., Z. Q Yu, Z. Wang and P. Cai, “A Criterion for Transition from Bubbling to Turbulent Fluidization”, in “Fluidization V”, K. Ostergarrd and A. Sorensen, Eds., pp. 289-296, Engineering Foundation, New York, U. S. A. (1986).
Judd, M. R. and R. Goosen, “Effects of Particle Shape on Fluidization Characteristics of Fine Particles in Freely Bubbling and Turbulent Regimes”, in “Fluidization VI”, J. R. Grace, L. W. Shermilt and M. A. Bergougnou, Eds., pp. 41-48, Engineering Foundation, New York, U. S. A. (1989).
Kehoe, P. W. K. and J. F. Davidson, “Continuously Slugging Fluidised Beds”, Inst. Chem. Eng. Sym. Ser., 33, 97-116 (1970)
Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in “Gas Fluidization Technology”, D. Geldart, Ed., pp. 341-414, Wiley, New York, U. S. A. (1986).
Knowlton, T. M. and I. Hirsan, “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, 57, 149-156 (1978).
Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U. S. A. (1991).
Lanneau, K. P., “Gas-Solid Contacting In Fluidized Beds”, Trans. Inst. Chem. Eng., 38, 125-137 (1960).
Lee, G. S., and S. D. Kim, “Pressure Fluctuations in Turbulent Fluidized Beds”, J. Chem. Eng. Japan, 21, 515-521 (1988).
Leung, L. S. and R. J. Wiles, “A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557 (1976).
Lu, X. and H. Li, “Wavelet Analysis of Pressure Fluctuation Signals in a Bubbling Fluidized Bed”, Chem. Eng. J., 75, 113-119 (1999).
Mallat, S., “A Theory for Multiresolution Signal Decomposition: the Wavelet Representation”, IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 674-693 (1989).
Mallat, S., “A Wavelet Tour of Signal Processing”, 2nd edition, pp.163-314, Cambridge University Press, Cambridge, U. K. (1999).
Matheson, G. L., W. A. Herbst and P. H. Holt, “Characteristics Fluid-solid Systems”, Ind. Eng. Chem., 41, 1099-1104 (1949).
Mori, S., O. Hashimoto, T. Haruta, K. Mochizuki, W. Matsutani, S. Hiraoka, I. Yamada, T. Kojima and K. Tuji, “Turbulent Fluidization Phenomena”, in “Circulating Fluidized Bed Technology II”, P. Basu and J. F. Large, Eds., pp. 105-112, Pergamon Press, Oxford, U. K. (1988).
Park, S. H., Y. Kang and S. D. Kim, “Wavelet Transform Analysis of Pressure Fluctuation Signals in a Pressurized Bubble Column”, Chem. Eng. Sci., 56, 6259-6265 (2001).
Perales, J. F., T. Coli, M. F. Liop, L. Puigjaner, J. Arnaldos and J. Casal, “On the Transition from Bubbling to Fast Fluidization Regimes”, in “Circulating Fluidized Bed Technology III”, P. Basu, M. Horio and M. Hasatani, Eds., pp. 73-78, Pergamon Press, Oxford, U. K. (1990).
Percival, D. B. and A. T. Walden, “Wavelet Methods for Time Series Analysis”, pp. 56-158, Cambridge University Press, London, U. K. (2002).
Ren, J., Q. Mao, J. Li and W. Lin, “Wavelet Analysis of Dynamic Behavior in Fluidized Beds”, Chem. Eng. Sci., 56, 981-988 (2001).
Rhodes, M. J., “What is Turbulent Fluidization?”, Powder Technol., 88, 3-14 (1996).
Rhodes, M. J. and D. Geldart, “Transition to Turbulence?”, in “Fluidization V”, K. Osterharrd and A. Sorensen, Eds., pp. 281-288, Engineering Foundation, New York, U. S. A. (1986).
Satija, S. and L. S. Fan, “Characteristics of Slugging Regime and Transition to Turbulent Regime for Fluidized Beds of Large Coarse Particles”, AIChE J., 31, 1554-1562 (1985).
Schnitzlein, M. G. and H. Weinstein, “Flow Characterization in High-Velocity Fluidized Beds Using Pressure Fluctuations”, Chem. Eng. Sci., 43, 2605-2614 (1988).
Shou, M. C. and L. P. Leu, “Identification of Transition Velcities in Fluidized Beds Using Wavelet Analysis”, J. Chem. Eng. Japan, 38, 409-421 (2005).
Son, J. E., J. H. Choi and C. K. Lee, “Hydrodynamics in a Large Circulating Fluidized Bed”, in “Circulating Fluidized Bed Technology II”, P. Basu and J. F. Large, Eds., pp. 113-120, Pergamon Press, Oxford, U. K. (1988).
Sun, G. and G. Chen, “Transition to Turbulent Fluidization and Its Prediction”, in “Fluidization VI”, J. R. Grace, L. W. Shermilt and M. A. Bergougnou, Eds., pp. 33-44, Engineering Foundation, New York, U. S. A. (1989).
Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A Quantitative Definition and Flow Regime Diagram for Fast Fluidization”, Powder Technol., 47, 195-199 (1986).
Tsukada, M., D. Nakanishi and M. Horio, “The Effect of Pressure on the Phase Transition from Bubbling to Turbulent Fluidization”, Int. J. Multiphase Flow, 19, 27-34 (1993).
Weinstein, H., M. Meller., M. J. Shao and R. J. Parisis, “The Effect of Particle Density on Holdup in a Fast Fluidized Bed”, AIChE Sym. Ser., 80 (234), 52-59 (1984).
Yang, T. Y. and L. P. Leu, “Statistical and Wavelet Analysis of Pressure Fluctuations on Characterizing the Onset of Turbulent Fluidization”, in “The Ninth Asian Conference on Fluidized-Bed and Three-Phase Reactors”, L. P. Leu and C. S. Chyang, Eds., pp. 37-42, Wanli, Taiwan (2004).
Yerushalmi, J. and A. A. Avidan, “High Velocity Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., pp. 225-291, Fluidization, Academic Press, London (1985).
Yerushalmi, J. and N. T. Cankurt, “Further Studies of the Regimes of Fluidization”, Powder Technol., 24, 187-205 (1979).
Yerushalmi, J. and N. T. Cankurt, D. Geldart and B. Liss, “Flow Regimes in Vertical Gas-Solid Contact Systems”, AIChE Sym. Ser., 74 (176), 1-14 (1978).
Zenz, F. A., “Two–Phase Fluidized-Solid Flow”, Ind. Eng. Chem., 41, 2801-2806 (1949).
鮑金寶(Bao Chin Pao), “氣泡及紊流流體化床之流態轉變對床壁間熱傳系數的影響”, 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (1997)。蕭明昌(Shou Ming Chang), “移轉速度的存在性及其對紊流流化床流態行為之研究”, 國立台灣大學化學工程研究所博士論文, 台北, 台灣 (2004)。陶政隆(Tao Cheng Lung), “紊流流體化床的床-壁間熱傳現象”, 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2006)。