跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家豪
研究生(外文):Gia-Hao Chang
論文名稱:人工免疫系統於多頻譜影像之研究
論文名稱(外文):Research of Artificial Immune System Approach in MRI Classification
指導教授:王圳木王圳木引用關係
指導教授(外文):Chuin-Mu Wang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊與電能科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:人工免疫系統核磁共振影像多頻譜醫學影像複製選擇演算法分類
外文關鍵詞:Artificial Immune SystemsMagnetic Resonance ImagingMultispectralMedical imageClonal Selection AlgorithmClassification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
近年來許多學者紛紛提出人工免疫系統(Artificial Immune System,AIS)的理論與研究,並於各領域中受到廣泛之使用,唯獨不見其對醫學頻譜影像上的應用。本研究為一種嶄新的方法,旨在建立一種適合醫學頻譜影像分割的人工免疫系統網路;透過人工免疫系統網路,於多頻譜影像中龐大的資訊而進行處理,此項處理亦即對腦部各組織的分割,最後則是分別呈現單一組織影像來顯示實驗的結果,進而提供醫師較迅速的組織參考資料,能夠更有效率、準確地判斷病灶之所在,才能爭取更多時間,進行後續動作的執行。為了證實本方法之可行性與效率,採用了ROC(Receiver Operating Curve)準則與概似比估計值(Likelihood Ratios)做一個多方面的評估,並且與雙層感知機網路、FCM方法等比較,證明了本實驗提出之方法是可行且優異的。
A lot of experts propose research about Artificial Immune System, and it has been widely used to a lot of fields, few applications are reported in medical image. This experiment is a brand-new application, and the purpose is to set up a kind of ais network suitable for medical image classification. Use the artificial immune system network to deal with the huge multi-spectral image data, meaning is the classification that the brain tissue. Finally, show the single tissue's image as result of the experiment. Offer reference information of tissue to a doctor quickly. More efficiently and more accurately. In order to verify the feasibility and efficiency of this method. We have used ROC (Receiver Operating Curve) method and Likelihood Ratios to assessment in many aspects. We compare with the Perceptron network of double layers, FCM method, prove AIS can be operated and fine.
中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------- iv
表目錄 --------------------------------------------------------------------------- vi
圖目錄 --------------------------------------------------------------------------- vii
第一章 緒論--------------------------------------------------------------------- 1
1.1 研究動機--------------------------------------------------------------- 1
1.2 研究目的與方法------------------------------------------------------ 3
1.3 文獻回顧--------------------------------------------------------------- 7
1.3.1 人工免疫系統--------------------------------------------------------- 7
1.4 章節架構--------------------------------------------------------------- 8
第二章 自然免疫系統--------------------------------------------------------- 9
2.1 簡介--------------------------------------------------------------------- 9
2.2 免疫系統的概念------------------------------------------------------ 9
第三章 人工免疫系統--------------------------------------------------------- 14
3.1 起源--------------------------------------------------------------------- 14
3.2 人工免疫系統之於工程應用問題--------------------------------- 16
第四章 人工免疫系統之演算法--------------------------------------------- 17
4.1 陰性選擇演算法------------------------------------------------------ 18
4.2 aiNet--------------------------------------------------------------------- 19
4.3 RLAIS------------------------------------------------------------------ 20
4.4 免疫遺傳演算法------------------------------------------------------ 20
4.5 複製選擇演算法------------------------------------------------------ 21
第五章 MRI--------------------------------------------------------------------- 25
5.1 原理--------------------------------------------------------------------- 25
5.2 組織效應--------------------------------------------------------------- 26
5.3 組織特性--------------------------------------------------------------- 26
第六章 AIS之CSA應用於MR影像之分類------------------------------- 28
6.1 影像之預備知識------------------------------------------------------ 28
6.1.1 灰階影像與二值影像------------------------------------------------ 28
6.1.2 頻譜影像--------------------------------------------------------------- 29
6.2 CSA於MR影像之分割--------------------------------------------- 30
第七章 評估方法與實驗結果------------------------------------------------ 38
7.1 假造影像--------------------------------------------------------------- 38
7.2 評估方法--------------------------------------------------------------- 41
7.3 實驗結果--------------------------------------------------------------- 44
7.3.1 假造腦部MR影像之實驗結果------------------------------------- 44
7.3.2 實際腦部MR影像之實驗結果------------------------------------- 56
第八章 結論--------------------------------------------------------------------- 59
參考文獻 --------------------------------------------------------------------------- 61
[1] M. S. Yang, Y. J. Hu, K. C. R. Lin and C. C. L. Lin, “Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms” , Magnetic Resonance Imaging, vol. 20, no. 2, pp. 173-179, 2002.
[2] K. L. Wu, M. S. Yang, “Alternative c-means clustering algorithms” , Pattern Recognition, vol. 35, no. 10, pp. 2267-2278, 2002.
[3] J. Alirezaie, M. E. Jernigan, and C. Nahmias, “Automatic segmentation of cerebral MR images using artificial neural networks” , IEEE Transactions Nuclear Science, vol. 45, no. 4, pp. 2174–2182, Aug. 1998.
[4] W. E. Reddick, J. O. Glass, E. N. Cook, T. D. Elkin, and R. J. Deaton, ”Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks” , IEEE Transactions on Medical Imaging, vol. 16, pp. 911–918, Dec. 1997.
[5] 葉怡成,類神經網路模式應用與實作,儒林出版社,2004年九月。
[6] 林昇甫、洪成安,神經網路入門與圖樣辨識,全華科技圖書股份有限公司,第3至37頁,1993年。
[7] De Castro L N, Timmis J. “Artificial immune systems:A new computational intelligence approach” , [M]. Springer-Verlag, London, 2002.
[8] Farmer J D, Packard N H. “The immune-system, adaptation, and machine learning” , [J]. Physica , vol. 22, no. 1,pp. 187-204, 1986.
[9] Timmis J, Neal M, Hunt J. “Artificial immune systems for data analysis” ,[J ]. Biosystem, vol. 55, pp. 143-150, 2000.
[10] 羅印升、李人厚、張雷、劉芳,人工免疫算法在函數優化中的應用,西安交通大學學報,第37卷,第8期,2003年。
[11] De Castro, L. N. & Von Zuben, F. J. “The Clonal Selection Algorithm with Engineering Applications“ , submitted to GECCO’00, 2000.
[12] De Castro L N, Von Zuben F. J. “Artificial Immune Systems:Part I-Basic Theory and Applications” , Technical Repot-RT DCA, 1999.
[13] 黃維, ”以類免疫系統法建置垃圾郵件過濾系統之研究” ,碩士論文,中原大學資訊管理研究所,桃園,2005年。
[14] 馬誠韋, “解答多目標規劃的新方法-免疫系統法” ,碩士論文,元智大學工業工程與管理學系,桃園,2002年。
[15] S Forrest, A S Perelson, L Allen R,et al. “Self-Nonself Discrimination in a Computer” ,[C].Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA:IEEE Computer Society Press, 1994.
[16] De Castro L N, Von Zuben F J. “aiNet: An Artificial Immune Network for Data Analysis” , In: Sarker R A ,Newton C S eds. Data Mining: A H euristic Approach Hershey :Idea Publishing Group, pp. 84-89, USA, 2001,.
[17] JIAO L C,WANG L. ”A novel genetic algorithm based on immunity” , [J].IEEE Trans Systems, Man and Cybernetics, vol. 30, no. 5, pp. 552-561, 2000.
[18] 陳志宏,一念之間:MRI 之美麗新境界—由今年之諾貝爾醫學獎談起,網頁資料:http://mr.ee.ntu.edu.tw/Eng_Ver/Chi_News_Main.htm,2003年。
[19] 李寬容、李三剛、李覃、楊康寧、何永仁、沈戊忠、韓念祖、蘇友吉,磁振造影診斷學,華榮圖書公司,第94至111頁,1990年。
[20] C. E. Metz, “ROC methodology in radiological imaging” , Investigat Radiol, vol. 21, pp. 720-723, 1986.
[21] C-I Chang, H. Ren, Q. Du, S-S Chiang, and A. Ifarrguerri, “An ROC analysis for subpixel detedction” , presented at the IEEE 2001 International Geoscience and Remote Sensing Symposium, pp. 24-28, Sydney, Australia, Jul. 2001.
[22] C-I Chang and H. Ren, “An experiment-based quantitative and comparative analysis of hyperspectral target detedtion and image classification algorithms“ , IEEE Trans. Geosci, Remote Sensing, vol. 38, pp.1044-1063, Mar. 2000.
[23] Martin T. Hagan, Howard B. Demuth and Mark H. Beale “Neural Network Design” , Theory and Examples pp. 14-16, 1995.
[24] Chuin-Mu Wang, Clayton Chi-Chang Chen, Yi-Nung Chung, Sheng-Chih Yang, Pau-Choo Chung, Ching-Wen Yang, Chein-I Chang. “Detection of spectral signatures in multispectral MR images for classification” , IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 50-61, 2003.
[25] J. S. Lin, R. M. Chen, Y. M. Huang, “Medical image sementation using field annealing network” , IEEE international Conference on Image Processing, vol. 2, pp.885-858, Oct. 1997.
[26] M. C. Clark, L. O. Hall, D. B. Goldgof, L. P. Clarke, R. P. Velthuizen, and M. S. Sibiger, “MRI segmentation using fuzzy clustering techniques” , IEEE Eng. Med. Biol. Magazine, vol. 13, pp.730-742, Nov. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top