跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬瑞奇
論文名稱:合成Naphthalimide衍生物與含Diketopyrrolopyrrole(DPP)為基底之[2]Rotaxane/Polyrotaxane作為新穎化學感測材料及可操控規則奈米自組裝結構之Polyrotaxane
論文名稱(外文):Synthesis of Naphthalimide Derivative and Diketopyrrolopyrrole (DPP)-Based [2]Rotaxane/Polyrotaxane as Novel Chemosensor Materials and a Controllable Hierarchical Nano Self-Assembled Structure from Polyrotaxane
指導教授:林宏洲林宏洲引用關係
指導教授(外文):Hong-Cheu, Lin
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:175
中文關鍵詞:超分子化學輪烷主客化學多輪烷化學計量器
外文關鍵詞:supramolecular chemistryrotaxaneshost-guest interactionpolyrotaxanechemodosimeter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
III

Chinese Abstract

合 成 Naphthalimide 衍 生 物 與 含 Diketopyrrolopyrrole (DPP) 為 基 底 之[2]Rotaxane/Polyrotaxane 作 為 新 穎 化 學 感 測 材 料 及 可 操 控 規 則 奈 米 自 組 裝 結 構 之Polyrotaxane

Student: 馬瑞奇 Advisor: 林宏洲 教授

本論文的主要目標是合成新的正交氫鍵機械互鎖/聚輪烷分子不對稱結構(二酮吡咯並吡
咯)塞,並研究其在溶劑條件、陰離子及酸鹼刺激下控制分子的穿梭過程並調控其納米結構的形成插入正協同非共價相互作用。在本博士論文中,我們已經簡短介紹了的早期嘗試合成如輪烷和索烴及其聚合物機械互鎖分子(MIMS)。此外,我們介紹了新穎的模板方法合成MIMS 和一些最新的例子基於 MIM 的分子梭在各種環境刺激下控制。從根本上來說,在這些系統裡化學感測正在被運用。同時,在這個博士論文中我們已開發出一種新型和淺顯的螢光比例來測定有毒肼並透過緩和的 Ing-Manske 鄰苯二甲酰亞胺去保護的方法。 在第二章中,成功建構一種新型的[2]輪烷的基礎上正交氫鍵和 3,6 - 二(噻吩基)吡咯並[3,4-C]吡咯-1,4(2H,5H) - 二酮(DPP)與控制 topicity,表現出對陰離子和溶劑極性優異的刺激反應。廣泛的運用 1H 和 19F NMR 滴定顯示出的結合位點和模式以及結合相互作用。其中證明了 preorganized 會選擇性地確認 F-光靈敏度高和可逆性通過增強的正協同和非共價相互作用的螢光壽命較短。因此,我們開發出了新型的選擇性氟離子光學[2]輪烷的分子開關。 在第三章中,四個類似的系統合成聚合物共聚單體與各種單體,含有二酮吡咯並吡咯單元與啞鈴單元拴,金屬化[2]輪烷,demetalated 的正交氫鍵 9 亞-9H-芴[2]輪烷,和一個簡單的烷
基鏈,透過 P1, P2, P3 和 P4, 分別研究的機械聯鎖的輪烷的垂飾和共軛聚合物骨架的超分子相互作用機制。運用 1H NMR 和紫外可見近紅外滴定的檔案證明了新型聚輪烷 DMRTP 通過對比其他聚合物(P1, P2 和 P3)本身是一個敏感的且在酸鹼溶液下分子開關能力為可逆的超分子相互作用。 P3 與其他聚合物相比,具有更窄的帶隙,這也經過計算研究證實了。特別的是,一個可控的納米自組裝過程 P3 的監測可藉由可逆酸鹼分子開關的方法來驗證。正交氫鍵垂飾[2]輪烷單元可以變形到一個納米次結構並藉由相互轉換的 H-bond,陰離子-π 和 π-
πstackings,以及疏水性相互作用。 在第四章,成功的合成肼苯二甲酰亞胺附加親水 naphthalimide,顯示出優異的色度和比例對肼的反應,通過 Ing-Manske 鄰苯二甲酰亞胺半水緩衝溶液中去保護條件是一種簡便和敏感

IV

的螢光探測。估計檢測限低至 4.2 nM(肼含量= 1 ppb)根據美國環境保護署(EPA),遠遠低於閾值限值(TLV)為 10 ppb。證明肼電流對於活細胞檢測的可行性。 因此,一種新型的基於 archetype DPP 高螢光[2]輪烷的開發。討論了溶劑極性和氟離子的刺激的反應。此外,該電流的設計隨著酸鹼調控的層次加上透過可逆的光學分子開關的方法,以及各種非共價相互作用的納米結構形成的聚輪烷的體系結構擴展進行了多方討論。此外,對於 Ing-Manske 鄰苯二甲酰亞胺脫肼一種新型的螢光比例 chemodosimeter 做了詳細介紹。
I

Abstract

Synthesis of Naphthalimide Derivative and Diketopyrrolopyrrole (DPP)-Based [2]Rotaxane/Polyrotaxane as Novel Chemosensor Materials and a Controllable Hierarchical Nano Self-Assembled Structure from Polyrotaxane

Student: M. V. P. S. K. R. Raju Advisor: Hong-Cheu, Lin

The pivotal objective of this dissertation is to construct novel orthogonally H-bonded mechanically interlocked molecular/polyrotaxane architectures with an asymmetric (Diketopyrrolopyrrole) stopper and to study their molecular shuttling process under solvent, anion, and acid-base stimuli control along with their controllable hierarchical nanostructure formations plugged with positive cooperativity non-covalent interactions. In the introduction of this doctoral thesis we have introduced
brief early synthetic attempts to create mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes as well as their polymeric counterparts. Moreover novel templating methodologies to build MIMs and some latest examples of MIMs based molecular shuttles under various stimuli control were also introduced. Fundamentally, underplayed chemo sensing mechanisms in these systems were presented. Meanwhile, we have developed a novel and facile fluorescent ratiometric chemodosimeter for grisly toxic hydrazine via mild Ing-Manske phthalimide deprotection method in this doctoral thesis as well.
In chapter two, a novel [2]rotaxane based on an orthogonal H-bonded motif and 3,6-di(thiophenyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) with controlled topicity was successfully constructed, displaying excellent stimulated responses toward anion and solvent polarity. The extensive 1H &; 19F NMR titrations were lucidly revealed the binding site and the mode binding interaction as well. The preorganized host selectively recognized F- with high optical sensitivity and
reversibility via enhanced positive cooperativity and noncovalent interaction by evidence of a shorter
fluorescence lifetime. Therefore we developed a first prototype [2]rotaxane molecular shuttle for selective recognition of F- with high optical outputs.

II

In chapter three, four analogous polymers were systematically synthesized by copolymerization of
a 9-alkylidene-9H-fluorene monomer with various monomers, which contained a diketopyrrolopyrrole unit tethered with a dumbbell unit, a metalated [2]rotaxane, a demetalated orthogonal H-bonded [2]rotaxane, and a simple alkyl chain, to furnish P1, P2, P3, and P4, respectively, to investigate the supramolecular interactions of the mechanically interlocked rotaxane pendants and conjugated polymer backbones. Prevailing 1H NMR and UV-vis to NIR titration
profiles indicated that the novel polyrotaxane P3 showed a sensitive and reversible acid-base molecular switch capability via supramolecular interactions in contrast to the other polymers (P1, P2, and P3). Compared with the other polymers, P3 possessed a narrower bandgap, which was also confirmed by the computational study. Prominently, the monitoring of a controllable nano-self-assembly process of P3 was obtained by reversible acid-base molecular switch approaches. The
orthogonal H-bonded pendant [2]rotaxane unit and the steric demand of P3 judiciously allowed to morph into a hierarchical nanostructure via interconvertible H-bonds, anion-π and π-π stackings, as well as hydrophobic interactions. In chapter four, A facile and sensitive fluorescent probe for hydrazine based on phthalimide
appended hydrophilic naphthalimide was successfully constructed, displaying excellent colorimetric and ratiometric responses towards hydrazine via Ing-Manske phthalimide deprotection conditions in semi-aqueous buffer solution. The estimated detection limit was as low as 4.2 nM (hydrazine content = 1 ppb) far below than the threshhold limit value (TLV) of 10 ppb according to the U. S. Environmental Protection Agency (EPA). Prevailing detection of hydrazine in living cells of the current probe is demonstrated. Thus in conclusion, a novel archetype DPP based highly fluorescent [2]rotaxane was developed.
The remarkable stimulated responses towards solvent polarity and fluoride ion were discussed.
Moreover, the extended efforts of this current design into polyrotaxane architectures along with their
acid-base controllable hierarchical nanostructure formations via reversible optical molecular switch approaches coupled with various non-covalent interactions were discussed. Furthermore a novel fluorescent ratiometric chemodosimeter for hydrazine based on Ing-Manske phthalimide deprotection was presented in detail.
Table of Contents

Abstract………………………………………………………………………………………………..I
Chinese abstract……………………………………………………………………………..............III
Acknowledgments…………………………………………………………………………................V
Table of Contents…………………………………………………………………………………...VI
List of Schemes……………………………………………………………………………………….X
List of Tables………………………………………………………………………………………...XI
List of Figures…………………………………………………………………………....................XII
Chapter 1. Introduction…………………………………………………………………...............1
1. 1 Supramolecular chemistry……………………………………………………………………1
1.1.1 Pseudorotaxanes, Rotaxanes, Catenanes, and Borromean rings…………….................2
1.1.2 Polyrotaxane architectures……………………………………………………………...4
1.1.3 Early synthetic attempts to construct MIMS…………………………………...............5
1.1.4 Principles to build MIMs and MIPAs………………………………………...... ……..8
1.1.5 Modern supramolecular templating methodologies to create MIMs………………….10
1.1.6 Fluorescent chemosensing applications of via molecular shuttle
approach under external stimuli……………………………………………................15
1. 2 Chemosensors: Principles and mechanisms………………………………………...............24
1.2.1 Classification of chemosensors………………………………………………….........25
1.2.2 Intramolecular charge transfer (ICT)…………………………………………………26
1.2.3 Photo induced electron transfer (PET)………………………………………………..27
1.2.4 Photo induced charge transfer (PCT)…………………………………………………29
1.2.5 Electronic energy transfer (EET)…………………………………………...................30
1.2.6 Fluorescence resonance energy transfer (FRET)……………………………...............32
1.2.7 Ratiometric chemodosimeters………………………………………………... ……...34
1. 3 Literature survey……………………………………….........................................................36
1.3.1 Solvent and Anion controllable [2]rotaxane molecular shuttles…………………..........36
1.3.1.1 Solvent driven molecular shuttles.............................................................................36
1.31.2 Anion driven molecular shuttles……………………………………………............37
1.3.2 Polyrotaxane Shuttles and their Controllable Self-assembly to form
Hierarchical Nanostructures…………………………………………………………….41
1.3.2.1 Polyrotaxane shuttles……………………………………………………………….41
1.3.2.2 Controllable molecular self-assembly of polyrotaxanes and their
Nanostructures……………………………………………………………………...43
1.3.3 Fluorescent Chemosensors for Hydrazine………………………………………………46
1. 4 Research Motive…………………………………………………………………………49-50
Chapter 2. A Novel Diketopyrrolopyrrole (DPP)-Based [2]rotaxane for Highly Selective Optical sensing of Fluoride……………………………………………………................................51
2. 1 Introduction…………………………………………………………………………………51
2. 2 Experimental section………………………………………………………………………..53
2.2.1 General methods and materials……………………………………………………….53
2.2.2 Stock solution preparation……………………………………………………………55
2.2.3 Synthesis of compound 1, compound 2, and DPP derivative 3………………………55
2.2.4 Synthesis of compound 1-C, [2]Rotaxane 2-M, and [2]Rotaxane 2-P…………. …...57
2.2.5 Synthetic procedures…………………………………………………………………58
2. 3 Results and Discussion………………………………………………………………………70
2.3.1 1H NMR titrations studies……………………………………………………………70
2.3.2 19F NMR titrations studies……………………………………………………………75
2.3.3 UV-vis &; Fluorescence titrations studies…………………………………………….76
2.3.4 Electrochemical titrations…………………………………………………………….81
2.3.5 Time resolved photo luminescence studies…………………………………………..82
2. 4 Conclusions…………………………………………………………………………….........83
Chapter 3. An Acid-Base Controllable Hierarchical Nano structure from a NIR-Absorbing
Conjugated Polyrotaxane-Based Optical Molecular Switch………………………….84
3. 1 Introduction…………………………………………………………………………………84
3. 2 Experimental section………………………………………………………………………..87
3.2.1 General methods and materials……………………………………………………….87
3.2.2 Sample preparation…………………………………………………………………...89
3.2.3 Calculation methods…………………………………………………………….........89
3.2.4 Molecular Design…………………………………………………….…………. …..90
3.2.5 Synthesis of AKF donor, DPP derivative, and rotaxanated copolymers………..........90
3.2.6 Synthetic Procedures…………………………………………………………………93
3.2.7 General Polymerization method &; Polymers data…………………………………...95
3. 3 Results and Discussion………………………………………………………………………98
3.3.1 Gel Permeation Chromatography (GPC) and 2D-DOSY NMR
Characterization of MIPA……………………………………………………………98
3.3.2 1H NMR Spectroscopic Studies………………………………………………………99
3.3.3 Optical and Electrochemical Measurements………………………………………..105
3.3.4 Theoretical Calculations…………………………………………………………….112
3.3.5 Microscopic and DLS of Controllable Hierarchical
Nano-self-Assemblies of MIPAs……………………………………………………121
3. 4 Conclusions……………………………………………………………………………131-132
Chapter 4. A Facile Ratiometric Fluorescent chemodosimeter for hydrazine and its Applications in living cells………………………………………………………………………...133
4. 1 Introduction………………………………………………………………………………..133
4. 2 Experimental section………………………………………………………………………135
4.2.1 General methods and materials……………………………………………………...135
4.2.2 Stock solutions…………………………………………………………………........136
4.2.3 Design strategy……………………………………………………………...............136
4.2.4 Synthetic Procedures………………………………………………………………..137
4. 3 Results and Discussion……………………………………………………………………..139
4.3.1 UV-vis and Fluorescence-based sensing studies of probe HZ……………………...139
4.3.2 Studies to realize ratiometric signalling mechanism of probe HZ………………….144
4.3.3 Time effects on ratiometric signalling………………………………………………148
4.3.4 Screening the selectivity of probe HZ………………………………………………149
4.3.5 pH effects on ratiometric signalling of probe HZ…………………………………..151
4.3.6 Confocal imaging of probe HZ in living cells……………………………………...155
4. 4 Conclusions……………………………………………………………………………….155
Chapter 5. Conclusions……………………………………………………………………………157
References……………………………………………………………………………………..........159
Author Information &; Publications…………………………………………………………………174

References
1. Lehn, J.-M. Agnew. Chem. Int. Ed. Engl. 1988, 27, 89.
2. Lehn, J.-M. Supramolecular Chemistry; Concepts and Perspectives; VCH: Weinheim, 1995.
3. Fischer, E. Ber. Dtsch. Chem. Ges. 1894, 27, 2985.
4. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.
5. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
6. Lüttringhaus, A.; Cramer, F.; Prinzbach, H.; Henglein, F. M. Liebigs Ann. Chem.
1958, 613, 185 – 198.
7. Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789.
8. Harrison, I. T.; Harrison, S. J. Am. Chem. Soc. 1967, 89, 5723.
9. Schill, G.; Zöllenkopf, H. Nachr. Chem. Techn. 1967, 79, 149.
10. Dietrich-Buchecker, C. O.; Sauvage, J.-P. Chem. Rev. 1987, 87, 795.
11. Griffiths, K. E.; Stoddart, J. F. Pure Appl. Chem. 2008, 80, 485.
12. Although various attempts were conducted for head-to-tail poly[2]rotaxane, all attempts were unsuccessful: (a) Ashton, P.; Baxter, I.; Cantrill, S. J.; Fyfe, M. C. T.; Glink, P. T.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem. Int. Ed. 1998, 37, 1294. (b) Ashton, P. R.; Parsons, I. W.; Raymo, F. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.; Wolf, R. Angew. Chem. Int. Ed. 1998, 37, 1913. (c) Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2, 759. (d) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Commun. 2000, 2143. (e) Onagi, H.; Easton, C. J.; Lincoln, S. F. Org. Lett. 2001, 3, 1041. (f) Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc. 2000, 122, 9876. (g) Rowan, S. J.; Stoddart, J. F. Polym Adv. Technol. 2002, 13, 777.
13. Head-to-head poly[2]rotaxane has been referred as poly[3]rotaxane: Oku, T.; Furusho, Y.; Takata, T. J. Polym. Sci. Part A: Polym Sci. 2003, 41, 119.
14. (a) Kohsaka, Y.; Koyama, Y.; Takata, T. Angew. Chem. Int. Ed. 2011, 50, 10417. (b) Kohsaka, Y.; Nakazono, K.; Koyama, Y.; Asai, S.; Takata, T. Angew. Chem. Int. Ed. 2011, 50, 4872. (c) Lee, Y.-G.; Koyama, Y.; Yonekawa, M.; Takata, T. Macromolecules 2010, 43, 4070. (d) Yamabuki, K.; Isobe, Y.; Onimura, K.; Oishi, T. Chem. Lett. 2007, 36, 1196. (e) Takata, T.; Kawasaki, H.; Kihara, N.; Furusho, Y. Macromolecules 2001, 34, 5449.
15. (a) Yamaguchi, I.; Osakada, K.; Yamamoto, T. Macromolecules 1997, 30, 4288. (b) Yamaguchi, I.; Osakada, K.; Yamamoto, T. Macromolecules 2000, 33, 2315. (c) Takata, T.; Kawasaki, H.; Kihara, N.; Furusho, Y. Macromolecules 2001, 34, 5449.
16. Fang, L.; Olson, M. A.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Stoddart, J. F. Chem. Soc. Rev. 2010, 39, 17.
17. Vetter, W.; Schill, G. Tetrahedron 1967, 23, 3079.
18. Schill, G.; Schweickert, N.; Fritz, H.; Vetter, M. Chem. Ber. 1988, 121, 961.
19. Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J.-P. Tetrahedron Lett. 1983, 24, 5095.
20. Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J.-P. J. Am. Chem. Soc. 1984, 106, 3043.
21. Cesario, M.; Dietrich-Buchecker, C. O.; Guilhem, J.; Pascard, C.; Sauvage, J.-P. J. Chem. Soc. Chem. Commun. 1985, 244.
22. (a) The slipping and threading terms were initially coined as ‘threading’, without differentiating the presence or absence of the stopper. Thus, slipping could be viewed as a particular case of the general ‘threading’. (b) Blanco, M. J.; Jimenez, M. C.; Chambron, J. C.; Heitz, V.; Linke, M.; Sauvage, J.-P. Chem. Soc. Rev. 1999, 28, 293. (c) Stoddart, J. F. Chem. Soc. Rev. 2009, 38, 1521.
23. Hanman, J. S.; Kidd, T. J.; Leigh, D. A.; Wilson, A. J. Org. Lett. 2003, 11, 1907.
24. Jäger, R.; Vögtle, F. Agnew. Chem., Int. Ed. Engl. 1997, 36, 930-944.
25. Leigh, D. A.; Murph, A.; Smart, J. P.; Slawin, A. M. Z. Angew. Chem. Int. Ed. Engl. 1997, 7, 728.
26. (a) Balzani, V.; Credi, A.; Marchioni, F.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 2001, 1860. (b) Ashton, P. R.; Brown, C. L.; Cao, J.; Lee, J. Y.; Newton, S. P.; Raymo, F. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Eur. J. Org. Chem. 2001, 957. (c) Balzani, V.; Ceroni, P.; Credi, A.; Gomez-Lopez, M.; Hamers, C.; Stoddart, J. F.; Wolf, R. New J. Chem. 2001, 25, 25. (d) Gunter, M. J.; Bampos, N.; Johnstone, K. D.; Sanders, J. K. M. New J. Chem. 2001, 25, 166. (e) Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Brown, C. L.; Credi, A.; Frechet, J. M. J.; Leon, J. W.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.; Venturi, M.; J. Am. Chem. Soc. 1996, 118, 12012.
27. Fyfe, M. C. T.; Stoddart, J. F. Adv. Supramol. Chem. 1999, 5, 1-53.
28. Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643-1664.
29. Chang, T.; Heiss, A. M.; Cantrill, S. J.; Fyfe, M. C. T.; Pease, A. R.; Rowan, S. J.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 19, 2947.
30. (a) Ogino, H. J. Am. Chem. Soc. 1981, 103, 1303. (b) Ogino, H.; Ohata, K. Inorg. Chem. 1984, 23, 3312. (c) Ogino, H. New J. Chem. 1993, 17, 683.
31. (a) Allwood, B. L.; Spencer, N.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1987, 1061. (b) Ashton, P. R.; Slawin, A. M. Z.; Spencer. N.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1987, 1066.
32. Wisner, J. A.; Beer, P. D.; Drew, M. G. B. A demonstration of anion templation and selectivity in pseudorotaxane formation Angew. Chem. Int. Ed. 2001, 40, 3606.
33. Wisner, J. A.; Beer, P. D.; Drew, M. G. B.; Sambrook, M. R. Anion-Templated Rotaxane Formation. J. Am. Chem. Soc. 2002, 124, 12469.
34. (a) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley, A. R.; Szemes, F.; Drew, M. G. B. Anion-Templated Assembly of Pseudorotaxanes: Importance of Anion Template, Strength of ion-pair Association, and macrocycle Ring Size. J. Am. Chem. Soc. 2005, 127, 2292. (b) Lankshear, M. D.; Beer, P. D. Acc. Chem. Res. 2007, 40, 657.
35. Aucagne, V.; Hanni, K. D.; Leigh, D. A.; Lusby, P. J. Walker, D. B.; J. Am. Chem. Soc. 2006, 128, 2186.
36. Aucagne, V.; Berna, J.; Leigh, D. A.; Lusby, P. J.; Crowley, J. D.; Goldup, S. M.; Hanni, K. D.; Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2007, 129, 11950.
37. Crowley, J. D.; Goldup. S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530.
38. Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131.
39. Chmielewski, M. J.; Davis, J. J.; Beer, P. D.; Org. Biomol. Chem. 2009, 7, 415.
40. Wang, Q.-C.; Qu, D. -H.; Tian, H. Angew. Chem. Int. Ed. 2004, 43, 2661.
41. Perez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto, F.; J. Am. Chem. Soc. 2004, 126, 12210.
42. Tian, H.; Wang, Q.-C. Chem. Soc. Rev. 2006, 35, 361.
43. Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.
44. Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. Org. Lett. 2004, 6, 2085.
45. Li, Y.; Li, H.; Li. Y. Liu, H.; Wang, S.; He, X.; Wang, N.; Zhu, D. Org. Lett. 2005, 7, 4835.
46. Baggerman. J.; Jagesar, D. C.; Vallee, R. A. L.; Hofkens, J.; De Schryver, C. F.; Schelhase, F.; Vogtle, F.; Brouwer, A. M. Chem. Eur. J. 2007, 13, 1291.
47. Arunkumar, E.; Forbes, C. C.; Noll, B. C.; Smith, B. D. J. Am. Chem. Soc. 2005, 127, 3288.
48. Johnson, J. R.; Fu, N.; Arunkumar, E.; Leevy, W. M.; Gammon, S. T.; Piwnica-Worms, D.; Smith, B. D. Angew. Chem. Int. Ed. 2007, 46, 5528.
49. Wang, X.; Bao, X.; Mancini, M. M.; Isaacsohn, I.; Drew, A. F.; Smithrud, D. B. J. Am. Chem. Soc. 2007, 129, 7284.
50. Sakamoto, K.; Takashima, Y.; Hamada, N.; Ichida, H.; Yamaguchi, H.; Yamamoto, H. Harada, A. Org. Lett. 2011, 13, 672.
51. Jiang, Q.; Zhang, H.-Y.; Han, M.; Ding, Z.-H, Liu, Y. Org. Lett. 2010, 12, 1728.
52. Kwan, P. H.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 5902.
53. Onagi, H. Rebek, J. Jr. Chem. Commun. 2005, 4604.
54. Alonso, A. M.; Ehil, C.; Rahman, A.; Guldi, D. M.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Prato, M. Angew. Chem. Int. Ed. 2007, 46, 3521.
55. (a) Lee, C. H.; Miyaji, H.; Yoon, D. W.; Sessler, J. L. Chem. Commun. 2008, 24.(b) Kim, J. S.; Quang, D. T., Chem. Rev. 2007, 107, 3780. (c) Wright, A.T.; E. V. Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14.
56. (a) Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355. (b) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. (c) Callan, J. F.; de Silva, A. P.; Magri, D. C., Tetrahedron 2005, 61, 8551.(d) Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Kohn, G.; James, T. D. J. Am. Chem. Soc. 2004, 126, 16179.
57. (a) Cao, H.; Heagy, M. D. J. Fluoresc. 2004, 14, 569. (b) Sessler, J. L.; Seidel, D. Angew. Chem., Int. Ed. 2003, 42, 5134. (c) Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302.
58. McDonagh, C.; Burke, C. S.; MacCraith, B. D. Chem. Rev. 2008, 108, 400.
59. Doussineau, T.; Schulz, A.; Lapresta-Fernandez, A.; Moro, A.; Kçrsten, S.; Sabine Trupp, Mohr, G. J. Chem. Eur. J. 2010. 16, 10290.
60. De Silva, A.P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C. P.; Rademacher, J.T.; Rice, T.E. Chem. Rev. 1997, 97,1515.
61. De Silva, A. P.; Moody, T. S.; Wright, G. D. Analyst 2009, 134, 2385.
62. (a) Valeur, B.; Schulman, (Ed.) S. G. Molecular Luminescence Spectroscopy, Part 3, Wiley, New York, 1993, p. 25. (b) Valeur, B.; Bourson, J.; Pouget, J.; Czarnik (Ed.), A. W. Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Symposium Series 538, American Chemical Society, Washington, DC, 1993, p. 25.
63. Wagner, R. W.; Lindsey, J. S.; Seth, T.; Palaniappan, V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996.
64. (a) Forester, T. Discuss. Faraday Soc. 1959, 27, 7. (b) Forster, T. Naturwissenschaften 1946, 33, 166. (b) Galanin, M. D. JETP.1955, 28,485. (c) Dexter, D. L. J. Chem. Phys.1953, 21, 836.
65. Tsien, R. Y.; Poenie, M. Trends Biochem. Sci. 1986, 11, 450-455.
66. (a) J. Du.; M. Hu.; J. Fan.; X. Peng. Chem. Soc. Rev. 2012, 41, 4511. (b) Y. Yang.; Q. Zhao.; W. Feng.; F. Li. Chem. Rev. 2013, 113, 192.
67. Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.
68. Lane, A. S.; Leigh, D. A. J. Am. Chem. Soc. 1997, 119, 11092.
69. Zhang, Z.; Han, C.; Yu, G.; Huang, F. Chem. Sci. 2012, 3, 3026.
70. Mateo-Alonso,A.; Ehil,C.; Guldi, D.M.; Prato,M. Org. Lett. 2013, 15, 84.
71. Keaveney, C. M.; Leigh, D. A. Angew. Chem. Int. Ed. 2004, 43, 1222.
72. Gassensmith, J. J.; Matthys, S.; Lee, J.-J.; Wojcik, A.; Kamat, P. V.; Smith, B. D. Chem. Eur. J. 2010, 16, 2916.
73. Hancock, L. M.; Marchi, E.; Ceroni, P.; Beer, P. D. Chem. Eur. J. 2012, 18, 11277.
74. Langton, M. J.; Beer, P. D. Chem. Eur. J. 2012, 18, 14406.
75. Chuang, C. -J.; Lai, C. -C.; Liu, Y. -H.; Peng, S.-M.; Chiu, S. -H. Chem. Eur. J. 2012, 18, 16698.
76. Chuang, C.-J.; Li, W. -S.; Lai, C. –C.; Liu, Y. -H.; Peng, S.-M.; Chao, I.; Chiu, S. –H. Org. Lett. 2009, 11, 385.
77. Zhang, H.; Hu, J. Qu, D. –H. Org. Lett. 2012, 14, 2334.
78. Kwan, P. H.; MacLachlan, M. J.; Swager, T. W. J. Am. Chem. Soc. 2004, 126, 8638.
79. Yamashita, A.; Kanda, D.; Katoono, R.; Yui, N.; Ooya, T.; Maruyama, A.; Akita, H.; Kogure, K.; Harashima, H. J. Controlled Release 2008, 131, 137.
80. Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chem. Commun. 2006, 3702.
81. Ji, X.; Yao, Y.; Li, J.; Yan, X.; Huang, F. J. Am. Chem. Soc. 2013, 135, 74.
82. Hwang, M. J.; Bae, H. S.; Kim, S. J.; Jeong, B. Macromolecules 2004, 37, 8820.
83. Wakabayashi, R.; Kubo, Y.; Kaneko, K.; Takeuchi, M.; Shinkai, S. J. Am. Chem. Soc. 2006, 128, 8744.
84. Olson, M. A.; Braunschweig, A. B.; Fang, L.; Ikeda, T.; Klajin, R.; Trabolsi, A.; Wesson, P. J. Benitez, D.; Mirkin, C. A.; Grazybowski. B. A.; Stoddart, J. F. Angew. Chem. Int. Ed. 2009, 48, 1792.
85. Sun, R.; Xue, C, Ma, X.; Gao, M. Tian, H.; Li, Q. J. Am. Chem. Soc. 2013, 135, 5990.
86. Choi, M. G.; Hwang, J.; Moon, J. K.; Sung, J.; Chang, S. -K. Org. Lett. 2011, 13, 5260.
87. (a) Fan, J.; Sun, W.; Hu, M.; Cao, J.; Cheng, G.; Dong, H.; Song, K.; Liu, Y.; Sun, S.; Peng, X,; Chem. Commun. 2012, 48, 8117. (b) Hu, C.; Sun, W.; Cao, J.; Gao, P.; Wang, J.; Fan, J.; Song, F.; Sun, S. Peng, X. Org. Lett. 2013, 15, 4022.
88. Li, K.; Xu, H. -R.; Yu, K. -K, Hou, J. -T.; Yu, X. -Q. Anal. Methods 2013, 5, 2653.
89. Choi, M. G.; Moon, J. K.; Bae, J.; Lee, J. W.; Chang, S. -K. Org. Biomol. Chem. 2013, 11, 2961.
90. C. Hu.; W. Sun.; J. Cao.; P. Gao.; J. Wang.; J. Fan.; F. Song.; S. Sun.; X. Peng. Org. Lett. 2013, 15, 4022.
91. (a) Lehn, J.-M. Supramolecular chemistry: Concepts and Perspectives; Wiley-VCH: New York, 1995. (b) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. (c) Supramolecular chemistry of Anions; Wiley-VCH: New York, 1997. (d) Martínez-Máñez.; Sancenón, F. Chem. Rev. 2003, 103, 4419.
92. (a) Weatherall, A. Pharmacology of Fluorides in Handbook of Experimental Pharmacology XX/1, Part 1, Springer, Berlin, 1969, pp. 141. (b) Kirk, K. L. Biochemistry of the Halogens and Inorganichalides, plenum, new York, 1991, p. 58.
93. (a) Pflugrath, J. W.; Quiocho, F. A. Nature 1985, 314, 257. (b) Sessler, J. L.; Camiolo, S.; Gale, P. A. Coord. Chem. Rev. 2003, 240, 17.
94. (a) Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D. A.; Wong, J. K. Y.; Zerbetto, F. Angew. Chem. Int. Ed. 2003, 42, 2296. (b) Lin. C.-F.; Liu, Y.-H.; Peng, S.-M.; Lai, C.-C.; Chiu, S.-H. Chem. Eur. J. 2007, 13, 4350. (c) Zhou, W.-D.; Li, J.-B.; He, X.-R.; Li, C.-H.; Lv, J.; Li, Y.-L.; Wang, S.; Liu, H.-B.; Zhu, D.-B. Chem. Eur. J. 2008, 14, 754. (d) Megiatto, J. D.; Schuster, D. I. Org. Lett. 2011, 13, 1808. (e) Li, H.; Zhang, H.; Zhang, Q.; Qu, D.-H. Org. Lett. 2012, 14, 5900.
95. (a) Huang, Y.-L.; Hung, W.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem. Int. ed. 2007, 46, 6629. (b) Lin, T.-Z.; Lai, C.-C.; Chiu, S.-H. Org. Lett. 2009, 11, 613. (c) Evans, N. H.; Serpell, C. J.; Beer, P. D. Chem. Commun. 2011, 47, 8775.
96. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum: New York, 1999.
97. Hao, Z.; Iqbal, A. Chem. Soc. Rev. 1997, 26, 203.
98. (a) Korendovych, I. V.; Cho, M.; Butler, P. L.; Stapless, R. J.; Rybak-Akimova, E. V. Org. Lett. 2006, 8, 3171. (b) Kaewtong, C.; Fuangswasdi, S.; Muangsin, N.; Chaichit, N.; Vicens, J.; Pulpoka, B. Org. Lett. 2006, 8, 1561. (c) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. (d) Sessler, J. L.; Kim, S. K.; Gross, D. E.; Lee, C. H.; Kim, J. S.; Lynch, V. M. J. Am. Chem. Soc. 2008, 130, 13162. (e) Kim, S. K.; Lynch, V.; Young, N. J.; Hay, B. P.; Lee, C. H.; Kim, J. S.; Moyer, B. A.; Sessler, J. L. J. Am. Chem. Soc. 2012, 134, 20837. (f) Thiampanya, P.; Muangsin, N.; Pulpoka, B. Org. Lett. 2012, 14, 4050.
99. Barrell, M. J.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z. Angew. Chem. Int. Ed. 2008, 47, 8036.
100. Cheng, T. P.; Pratic, D.; Yoon, J.; Hao, Z. U.S. 2002, US6414002B1, 20020702.
101. Sabah, A.; Alexandre, L.; Mourard, E.; Charbonniere, J. L. Dalton Trans. 2010, 29, 9055.
102. Gibson, H. W.; Lee, S. H.; Engen, P. T.; Lecavalier, P.; Sze, J.; Shen, Y. X.; Bheda. M. J. Org. Chem. 1993, 58, 3748.
103. Fuller, A.-M.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. J. Am. Chem. Soc. 2005, 127, 12612.
104. Huo, L.; Hou, J.; Chen, H. Y.; Zhang, S.; Yang, Y. Macromolecules 2009, 42, 6564.
105. (a) Furusho, Y.; Matsuyama, T.; Takata, T.; Moriuchi, T.; Hirao, T. Tetrahedron Lett. 2004, 45, 9593. (b) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.; Walker, D. B. Angew. Chem. Int. Ed. 2004, 43, 3914. (c) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Angew. Chem. Int. Ed. 2005, 44, 4557. (d) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; MaBurney, R. T.; Perret-Aebi, L.-E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. Chem. Soc. 2007, 129, 15085. (e) Fuller, A. M.; Leigh, D. A.; Lusby, P. J. J. Am. Chem. Soc. 2010, 132, 4954.
106. (a) Lane, A. S.; Leigh, D. A.; Murphy, A. J. Am. Chem. Soc. 1997, 119, 11092. (b) Chiang, P.-T.; Cheng, P.-N.; Lin, C.-F.; Liu, Y.-H.; Lai, C.-C.; Peng, S.-M.; Chiu, S.-H. Chem.-Eur. J. 2006, 12, 865.
107. Strutt, N. L.; Forgan, R. S.; Spruell, J. M.; Batros, Y. Y.; Stoddart, J. F. J. Am. Chem. Soc. 2011, 133, 5668.
108. Connors, K. A. Binding Constants; Wiley: New York, 1987.
109. Fukuzumi, S.; Ohukubo, K.; D’Souza, F.; Sessler, J. L.; Chem. Commun. 2012, 48, 9801.
110. Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172-1175.
111. (a) Frampton, M. J.; Anderson, H. L. Angew. Chem. Int. Ed. 2007, 46, 1028-1064. (b) Terao, J.; Tanaka, Y.; Tsuda, S.; Kambe, N.; Taniguchi, M.; Kawai, T.; Saeki, A.; Seki, S. J. Am. Chem. Soc. 2009, 131, 18046-18047. (c) Terao, J. Polym. Chem. 2011, 2, 2444-2452.
112. (a) Ooya, T.; Choi, H. K.; Yamashita, A.; Yui, N.; Sugaya, Y.; Kano, A.; Maruyama, A.; Akita, H.; Ito, R.; Kogure, K.; Harashima, H. J. Am. Chem. Soc. 2006, 128, 3852-3853. (b) Seo, J. H.; Kakinoki, S.; Inoue, Y.; Yamaoka, T.; Ishihara, K.; Yui, N. J. Am. Chem. Soc. 2013, 135, 5513-5516.
113. (a) Anderson, H. L.; Anderson, S.; Sanders, J. K. M. Acc. Chem. Res. 1993, 26, 469-475. (b) Werts Michel, P. L.; Boogaard, M. V. D.; Tsivgoulis, G. T.; Hadziioannou, G. Macromolecules 2003, 36, 7004-7013. (c) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200-1205.
114. (a) Zhu, S. S.; Carroll, P. J.; Swager, T. M. J. Am. Chem. Soc. 1996, 118, 8713-8714. (b) Gong, C.; Ji, Q.; Subramaniam, C.; Gibson, H. W. Macromolecules 1998, 31, 1814-1818. (c) Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Song, H. B. Angew. Chem. Int. Ed. 2003, 42, 3260-3263. (d) Terao, J.; Tsuda, S.; Tanaka, Y.; Okoshi, K.; Fujihara, T.; Tsuji, Y.; Kambe, N. J. Am. Chem. Soc. 2009, 131, 16004-16005. (e) Tzeng, B. C.; Wei, S. L.; Chang, T. Y. Chem. Eur. J. 2012, 18, 16443-16449.
115. (a) Weidmann, J. L.; Kern, J. M.; Sauvage, J. P.; Geerts, Y.; Muscat, D.; Mullen, K. Chem. Commun. 1996, 1243-1244. (b) Weidmann, J. L.; Kern, J. M.; Sauvage, J. P.; Muscat, D.; Mullins, S.; Kohler, W.; Rosenauer, C.; Radar, H. J.; Martin, K.; Geerts, Y. Chem. Eur. J. 1999, 5, 1841-1851. (c) Taura, D.; Li, S.; Hashidzume, A.; Harada, A. Macromolecules 2010, 43, 1706-1713.
116. (a) Michels, J. J.; O’Connell, M. J.; Taylor, P. N.; Wilson, J. S.; Cacialli, F.; Anderson, H. L. Chem. Eur. J. 2003, 9, 6167-6176. (b) Yamaguchi, I.; Kashiwagi, K.; Yamamoto, T. Macromol. Rapid Commun 2004, 25, 1163-1166.
117. (a) Fluery, G.; Schlatter, G.; Brochon, C.; Travelet, C.; Lapp, A.; Lindener, P.; Hadziioannou, G. Macromolecules 2007, 40, 535-543. (b) Ren, L.; Ke, F.; Chen, Y.; Liang, D.; Huang, J. Macromolecules 2008, 41, 5295-5300. (c) De Bo, G.; Winter, J. D.; Gerbaux, P.; Fustin, C. A. Angew. Chem. Int. Ed. 2011, 50, 9093-9096.
118. (a) Ball, P. Nature 2000, 406, 118-120. (b) Scarff, C. A.; Snelling, J. R.; Knust, M. M.; Wilkins, C. L.; Scrives, J. H.; J. Am. Chem, Soc. 2012, 134, 9193−9198.
119. MacLachlan, M. J.; Rose, A.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 9180-9181.
120. Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Happerin, E. J.; DiIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414-417.
121. (a) Wenz, G.; Han, B. H.; Muller, A. Chem. Rev. 2006, 106, 782-817. (b) Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 109, 5974-6023.
122. (a) Kim, K. Chem. Soc. Rev. 2002, 31, 96-107. (b) Ko, Y. H.; Kim, E.; Hwang, I.; Kim, K. Chem. Commun. 2007, 1305-1315.
123. Momcilovic, N.; Clark, P. G.; Boydston, A. J.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 19087-19089.
124. (a) Li, J.; Loh, X. J.; Advanced Drug Delivery Reviews 2008, 60, 1000-1017. (b) Dam, H. H.; Caruso, F. Adv. Mater. 2011, 23, 3026-3029. (c) Yamada, Y.; Nomura, T.; Harashima, H.; Yamashita, A.; Yui, N. Biomaterials 2012, 33, 3952-3958.
125. Ghadari, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301-304.
126. Raju, M. V. R.; Lin, H. C. Org. Lett. 2013, 15, 1274-1277.
127. Heeney, M.; Bailey, C.; Giles, M.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W.; McCulloch, I. Macromolecules 2004, 37, 5250-5256.
128. Tamayo, A. B.; Tantiwiwat, M.; Walker, B.; Nguyen, T. Q. J. Phys. Chem. C 2008, 112, 15543-15552.
129. Frisch, M. J. et al. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009.
130. Boese, A. D.; Handy, N. C.; J. Chem. Phys. 2002, 116, 9559–9569.
131. (a) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264-6271. (b) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. J. Chem. Phys. 2000, 112, 1670-1678.
132. (a) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209-220. (b) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 221-264.
133. Qu, S.; Tian, H. Chem. Commun. 2012, 48, 3039-3051.
134. Du, C.; Li, C.; Li, W.; Chen, X.; Bo, Z.; Veit, C.; Ma, Z.; Wuerful, U.; Zhu, H.; Hu, W.; Zhang, F. Macromolecules 2011, 44, 7617-7624.
135. Zhang, W.; Dichtel, W. R.; Stieg, A. Z.; Benitez, D.; Glimzewski, J. K.; Heath, J. R.; Stoddart, J. F. Proc. Natl. Acad. Sci. 2008, 105, 6514-6519.
136. (a) Jang, Y. H.; Hwang, S.; Kim, Y. H.; Jang, S. S.; Goddard, W. A. J. Am. Chem. Soc. 2004, 126, 12636-12645. (b) Benitez, D.; II Yoon, T.; Stoddart, J. F.; Goddard III, W. A. J. Am. Chem. Soc. 2008, 130, 14928-14929.
137. (a) Wu, J.; Gao, C. Macromolecules 2010, 43, 7139-7146. (b) Chen, Y.; Zhang, Y. M.; Liu, Y. Chem. Commun. 2010, 46, 5622-5633.
138. (a) Martinez, C. R.; Iverson, B. L. Chem. Sci. 2012, 3, 2191-2201. (b) Tzeng, B. C.; Wei, S. L.; Chang, T. Y. Chem. Eur. J. 2012, 18, 5105-5112. (c) Mitra, A.; Panda, D. K.; Carson, L. J.; Saha, S. Chem.Com
mun. 2013, 49, 4601-4603.
139. (a) Magonov SN (2001) Visualization of polymers at surfaces and interfaces with atomic
force microscopy. Handbook of Surfaces and Interfaces of Materials, ed Nalwa HR (Academic, New York), Vol 2, pp 393–429. (b) Moulin, J.-F.; Kengne, J. C.; Kshirsagar, R.; Cavallani, M.; Biscarini, F.; Leon, S.; Zerbetto, F.; Bottari, G.; Leigh, D. A. J. Am. Chem. Soc. 2006, 128, 526-532.
140. Fialkowski, M.; Bitner, A.; Grzybowski, B. A. Nat. Mater. 2005, 4, 93 – 97.
141. Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew. Chem. Int. Ed. 2006, 45, 7526-7530.
142. Shapira, A.; Livney, Y. D.; Broxterman, H. J.; Assaraf, Y. G. Drug Resistance Updates 2011, 14, 150-163.
143. Schiessl, H. W. Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley &; Sons, Inc., 2000, pp. 562-607.
144. Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205–213.
145. Wang, J.; Chen, L. Anal. Chem. 1995, 67, 3824-3927.
146. International Agency for Research on Cancer: Re-evaluation of some organic chemicals, hydrazine, and hydrogen peroxide. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Lyon, IARC, 1999, Vol. 71, pp 991_1013. http://monographs. iarc.fr/ENG/Monographs/vol71/mono71-43.pdf.
147. Batchelor-McAuley, C.; Banks, C. E.; Simm, A. O.; Jones, T. G. J.; Compton, R. G. Analyst 2006, 131, 106-110.
148. Liu, Y. Y.; Schmeltz, I.; Hoffmann, D. Anal. Chem. 1974, 46, 885-889.
149. (a) Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783-4804. (b) Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Chem. Soc. Rev. 2011, 40, 3416-3429.
150. Jiang, J.; Liu, W.; Cheng, J.; yang, L.; Jiang, H.; Bai, D.; Liu, W. Chem. Commun. 2012, 48, 8371-8373.
151. (a) Song, F.; Watanabe, S.; Foreancig, P. A.; Koide, K. J. Am. Chem. Soc. 2008, 130, 16460-16461. (b) Maity, D.; Govindaraju, T. Chem. Commun. 2012, 48, 1039-1041. (c) Xu, Y.; Li, B.; Li, W.; Zhao, J.; Sun, S.; Pang, Y. Chem. Commun. 2013, 49, 4764-4766.
152. Khan, M. N. J. Org. Chem. 1995, 60, 4536-4541.
153. Duke, M. R.; Veale, E. B.; Pfeffer, M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936-3953.
154. March, J. Advanced Organic Chemistry: Reactions, Mechanisms and Structures, 2nd ed.; McGraw-Hill Kogakusha, Ltd.: Tokyo, 1977; p 388.
155. (a) Bolhoter, W. A.; Sheehan, J. C. J. Am. Chem. Soc. 1950, 72, 2786-2788. (b) Gibson, M. S.; Bradshaw, R. W. Angew. Chem. Int. Ed. 1968, 7, 919-930.
156. Tian, H.; Gan, J.; Chen, K.; He, J.; Song, Q. L.; Hou, X. Y. J. Mater. Chem. 2012, 12, 1262-1277.
157. (a) Shortreed, M.; Kopelman, R.; Kuhn, M. Hoyland, B. Anal. Chem. 1996, 68, 1414-1418. (b) Umar, A.; Rahman, M. M.; Kim, S. H.; Hahn, Y.-B. Chem. Commun. 2008, 166-168.
158. (a) Ing, H. R.; Manske, R. H. F. J. Chem. Soc. 1926, 2348-2351. (b) Ariffin, A.; Khan, M. N.; Lan, L. C.; May, F. Y.; Yun, C. S. Synth Commun. 2004, 34, 4439-4445.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top