跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瑜真
研究生(外文):Yu-Chen Hsu
論文名稱:BRAM1在BMP訊息傳遞中所扮演的角色
論文名稱(外文):Role of BMP receptor-associated molecule BRAM1 in BMP signaling
指導教授:王蓮成張玉生張玉生引用關係
指導教授(外文):Lian-Chen WangYu-Sun Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:41
中文關鍵詞:BMP接受器一號之接合分子一號BMP訊息傳遞
外文關鍵詞:BRAM1BMP signaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在Bone morphogenetic protein (BMP)刺激下使磷酸化的BMP接受體將BMP訊息傳遞下游的Smad蛋白質活化,主要傳遞BMP訊息的接受體調節Smad蛋白質 (R-Smad proteins)分別為Smad1、Smad5和Smad8。受BMP接受體磷酸化的R-Smad和Smad4形成複合體後,進入細胞核,調節BMP目標基因的表現。BMP受接受器一號之接合分子一號 (BRAM1)可和BMP接受器1A結合。然而BRAM1在BMP訊息傳遞的定位尚未清楚。
本篇研究利用免疫沉澱法、西方點墨法和共軛焦顯微鏡來探討BRAM1與BMP接受器和Smad蛋白質間的作用。結果指出,不論是否有BMP2的存在下,BRAM1的確可以與BMP接受器結合,而且兩者的結合主要是經由BRAM1 C端的Mynd domain。在共軛焦顯微鏡來觀察BRAM1和BMP訊息傳遞中的不同蛋白質位置的關係。結果發現,BRAM1和BMP接受器及Smad5會位在同區域,Smad1則否。暗示Smad1和Smad5雖然同屬於BMP訊息傳遞中的R-Smad,但在COS7細胞株的BMP訊息傳遞中,可能扮演了不同的角色。此外,BRAM1影響BMP,顯示BRAM1可干擾BMP訊息傳遞。

Bone morphogenetic protein induces signals through the stimulation of serine/threonine kinase receptors which phosphorylated BMP signaling mediators, Smad1, Smad5 and Smad4. The phosphorylated Smad1/5/4 complex is then translocated to the nucleus and regulates the BMP target genes. BMP receptor associated molecule 1 (BRAM1) is a molecule that associates with BMP receptor IA. However its role in BMP signaling is still unclear. Thus, the specific aims of this study are examined (1) if BRAM1 affects BMP signaling; (2) If so, are the Smad proteins classical BMP signaling mediators involved?
In this study, we demonstrate that BRAM1 interacts with BMP receptor by co-immunoprecipitaion, Western blot and confocal microscopy. The results show that BRAM1 associates with wild type BMP receptor as well as the constitutively activated BMPR. The Mynd domain of BRAM1 is the main region for BRAM1-BMPR interaction. Confocal microscopy study showed that BRAM1 co-localized with BMPR and Smad5, but not with Smad1. Furthermore, BRAM1 prevents the nucleus translocation of Smad4 in response to BMP treatment. Thus the results suggest that BRAM1 may be involved in BMP signaling. This study will provide more information regarding the function of BRAM1.

Contents
English Abstract………………………………….…………….iii
Chinese Abstract……………………………………………….…iv
Introduction…………………………………………………….…1
Material and methods…………………………………………..…8
Results………………………………………………………………13
Discussion ……………………….………………………………18
Reference…………………………….………………...…………21
Figure and Table…………………….……………………………29

1. Ansieau, S., and Leutz, A. (2002). The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277, 4906-4910.
2. Chung, P. J., Chang, Y. S., Liang, C. L., and Meng, C. L. (2002). Negative regulation of Epstein-Barr virus latent membrane protein 1-mediated functions by the bone morphogenetic protein receptor IA-binding protein, BRAM1. J Biol Chem 277, 39850-39857.
3. Derynck, R., Zhang, Y., and Feng, X. H. (1998). Smads: transcriptional activators of TGF-beta responses. Cell 95, 737-740.
4. Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P. G., and Lazar, M. A. (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18, 7185-7191.
5. Ghosh-Choudhury, N., Abboud, S. L., Nishimura, R., Celeste, A., Mahimainathan, L., and Choudhury, G. G. (2002). Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277, 33361-33368.
6. Gross CT, McGinnis W. (1996). DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J. Apr 15;15(8):1961-70.
7. Hateboer, G., Gennissen, A., Ramos, Y. F., Kerkhoven, R. M., Sonntag-Buck, V., Stunnenberg, H. G., and Bernards, R. (1995). BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J 14, 3159-3169.
8. Hay, E., Lemonnier, J., Fromigue, O., and Marie, P. J. (2001). Bone Morphogenetic Protein-2 Promotes Osteoblast Apoptosis through a Smad-independent, Protein Kinase C-dependent Signaling Pathway. J Biol Chem 276, 29028-29036.
9. Heldin, C. H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.
10. Henningfeld, K. A., Rastegar, S., Adler, G., and Knochel, W. (2000). Smad1 and Smad4 are components of the bone morphogenetic protein-4 (BMP-4)-induced transcription complex of the Xvent-2B promoter. J Biol Chem 275, 21827-21835.
11. Hogan, B. L. (1996). Bone morphogenetic proteins in development
12. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Curr Opin Genet Dev 6, 432-438.
13. Howell, M., Itoh, F., Pierreux, C. E., Valgeirsdottir, S., Itoh, S., ten Dijke, P., and Hill, C. S. (1999). Xenopus Smad4-beta Is the Co-Smad Component of Developmentally Regulated Transcription Factor Complexes Responsible for Induction of Early Mesodermal Genes. Dev Biol 214, 354-369.
14. Inman, G. J., Nicolas, F. J., and Hill, C. S. (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10, 283-294.
15. Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., Sampath, T. K., Kato, M., and Miyazono, K. (2000). Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J Biol Chem 275, 6075-6079.
16. Itoh, F., Asao, H., Sugamura, K., Heldin, C. H., ten Dijke, P., and Itoh, S. (2001). Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J 20, 4132-4142.
17. Kawabata, M., Chytil, A., and Moses, H. L. (1995). Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-beta receptor. J Biol Chem 270, 5625-5630.
18. Kawabata, M., Imamura, T., and Miyazono, K. (1998a). Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9, 49-61.
19. Kawabata, M., Inoue, H., Hanyu, A., Imamura, T., and Miyazono, K. (1998b). Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17, 4056-4065.
20. Kingsley, D. M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133-146.
21. Kirsch, T., Sebald, W., and Dreyer, M. K. (2000). Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7, 492-496.
22. Kretschmer, A., Moepert, K., Dames, S., Sternberger, M., Kaufmann, J., and Klippel, A. (2003). Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene 22, 6748-6763.
23. Kurozumi, K., Nishita, M., Yamaguchi, K., Fujita, T., Ueno, N., and Shibuya, H. (1998). BRAM1, a BMP receptor-associated molecule involved in BMP signalling. Genes Cells 3, 257-264.
24. Lutterbach, B., Sun, D., Schuetz, J., and Hiebert, S. W. (1998). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol 18, 3604-3611.
25. Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753-791.
26. Massague, J. (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1, 169-178.
27. Massague, J., and Chen, Y. G. (2000). Controlling TGF-beta signaling. Genes Dev 14, 627-644.
28. Masselink, H., and Bernards, R. (2000). The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19, 1538-1546.
29. Masuyama, N., Hanafusa, H., Kusakabe, M., Shibuya, H., and Nishida, E. (1999). Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J Biol Chem 274, 12163-12170.
30. Mehler, M. F., Mabie, P. C., Zhang, D., and Kessler, J. A. (1997). Bone morphogenetic proteins in the nervous system. Trends Neurosci 20, 309-317.
31. Morita, K., Shimizu, M., Shibuya, H., and Ueno, N. (2001). A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF-beta signaling. Proc Natl Acad Sci U S A 98, 6284-6288.
32. Moses, H. L., Branum, E. L., Proper, J. A., and Robinson, R. A. (1981). Transforming growth factor production by chemically transformed cells. Cancer Res 41, 2842-2848.
33. Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252-256.
34. Piek, E., Heldin, C. H., and Ten Dijke, P. (1999). Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 13, 2105-2124.
35. Qin, B. Y., Lam, S. S., Correia, J. J., and Lin, K. (2002). Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev 16, 1950-1963.
36. Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M., and Sporn, M. B. (1981). New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A 78, 5339-5343.
37. Rosenzweig, B. L., Imamura, T., Okadome, T., Cox, G. N., Yamashita, H., ten Dijke, P., Heldin, C. H., and Miyazono, K. (1995). Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 92, 7632-7636.
38. Savage, C., Das, P., Finelli, A. L., Townsend, S. R., Sun, C. Y., Baird, S. E., and Padgett, R. W. (1996). Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 93, 790-794.
39. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H., and Gelbart, W. M. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347-1358.
40. Shi, Y., Hata, A., Lo, R. S., Massague, J., and Pavletich, N. P. (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87-93.
41. Shibuya, H., Iwata, H., Masuyama, N., Gotoh, Y., Yamaguchi, K., Irie, K., Matsumoto, K., Nishida, E., and Ueno, N. (1998). Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17, 1019-1028.
42. Sims, R. J., 3rd, Weihe, E. K., Zhu, L., O'Malley, S., Harriss, J. V., and Gottlieb, P. D. (2002). m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J Biol Chem 277, 26524-26529.
43. Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S., and Liu, J. M. (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 95, 10860-10865.
44. Watanabe, M., Masuyama, N., Fukuda, M., and Nishida, E. (2000). Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep 1, 176-182.
45. Wotton, D., Lo, R. S., Lee, S., and Massague, J. (1999). A Smad transcriptional corepressor. Cell 97, 29-39.
46. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massague, J. (1994). Mechanism of activation of the TGF-beta receptor. Nature 370, 341-347.
47. Wu, J. W., Fairman, R., Penry, J., and Shi, Y. (2001). Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem 276, 20688-20694.
48. Xiao, Z., Liu, X., Henis, Y. I., and Lodish, H. F. (2000). A distinct nuclear localization signal in the N terminus of Smad3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci U S A 97, 7853-7858.
49. Xiao, Z., Watson, N., Rodriguez, C., and Lodish, H. F. (2001). Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals. J Biol Chem 276, 39404-39410.
50. Yamashita, H., ten Dijke, P., Franzen, P., Miyazono, K., Heldin, C. H., Sampath, T. K., Reddi, A. H., Estevez, M., Riddle, D. L., and Ichijo, H. (1994). Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269, 20172-20178.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 22. 曹鼎志、許文科、賴承農、鄭錦桐、張玉粦、陳振宇、羅文俊(2010),「土石流風險分析之建構與應用」,中興工程專刊,109:41-52。
2. 12. 何岱杰、張維恕、林慶偉、劉守恆(2014),「應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋」,航測及遙測學刊,18(2):109-127。
3. 25. 許民陽、徐玲莉、張乃云(2008),「防災教育種子教師培育機制規劃及試行」,環境教育學刊,8:51-70。
4. 26. 陳樹群、郭靜苓、吳俊鋐(2013),「台灣強降雨誘發崩塌規模與區位之特性分析」,中華水土保持學報,44(1):34-49。
5. 33. 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生(2015),「台灣山區淺層崩塌地特性調查與分析」,中華水土保持學報,46(1):19-28。
6. 35. 劉進金、史天元(2009),「以空載光達技術進行三維空間資訊之收集及應用」,土木水利,36(5):52-63。
7. 39. 魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇(2012),「深層崩塌之地貌特徵--以臺灣南部地區為例」,中興工程,115(1):35-43。
8. 7.林俐玲、王兆文、沈哲緯(2011),「運用羅吉斯迴歸分析山坡地土地可利用限度查定分類」,水土保持學報,43(3): 277-296。
9. 9.邱景升(2008),「應用多元方格網模式比較坡度計算法差異之研究」,地理學報,51:47-63。
10. 11.洪詮斌、鄭皆達、黃晴曉、黃育珍(2008),「山坡地潛在地滑區土地利用可行性研究-以臺中市大坑地區為例」,水土保持學報40(2):247-268。
11. 15.陳文福、林憶志、陳明賢(2009),「地理統計方法應用於山坡地土地可利用限度分類精確化查定土壤因子之研究」,水土保持學報,41(3):297-310。
12. 20.許正一、陳尊賢(1994),「地下水位變動與土壤氧化還原形態特徵關係」,土壤肥料通訊,42:21-36。
13. 24.黃國楨、王韻皓、焦國模(1996),「植生指標於SPOT衛星影像之研究」,臺灣林業,22(1):45-52。
14. 29.萬鑫森、黃俊義(1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(1):17-45。
15. 31.廖靜慧、林俐玲(2002),「通用土壤流失公式(USLE)地形因子(LS)計算方式之探討」,水土保持學報,44(4):381-390