跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瑋真
研究生(外文):Wei-Chen Hsu
論文名稱:固定化澱粉質吸附材於乙醇脫水之動態吸附研究
論文名稱(外文):Kinetic Adsorption Study for Ethanol dehydration using Immobilization starch-based adsorbent
指導教授:鍾財王鍾財王引用關係
指導教授(外文):Tsai-Wang Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:生物吸附材固定化貫流曲線溶膠-凝膠乙醇-水混合物
外文關鍵詞:Bio-adsorbentImmobilizeBreakthrough curveSol-GelEthanol-water mixture.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在酒精和水混合物的分離技術當中,於一大氣壓下,酒精和水組成為95.6wt%時,在78.2℃會瓹生共沸點,而吸附分離相較於傳統共沸蒸餾或萃取蒸餾為一種較節能的程序,因此被廣泛運用在酒精脫水。由於其吸附選擇性及再生效率較差,近年來有些學者開始利用澱粉等材料來當作吸附材,但未經處理的澱粉吸附材有膨潤及糊化等問題。因此,本研究利用Sol-Gel法成功將澱粉固定化在矽膠基材上,以解決澱粉在吸附上所遇到的問題。本論文先利用BET比表面積測定儀,使用固定化澱粉作為吸附劑,得到不同的吸附帄衡數據,由數學分析等溫線吸附帄衡關係式,取得等溫吸附帄衡曲線圖及其參數。最後由實驗方式將顆粒狀固定化澱粉填充於單一吸附塔中進行模擬,研究中藉由改變不同的操作條件(如進料濃度、氣體流速、吸附材顆粒大小及床層高度)探討各種變因對貫流行為的影響,並以傅立業紅外線光譜儀取代傳統氣相層析儀,快速有效率的偵測濃度的變化。結果可發現,貫流曲線的突破時間因進料濃度和氣體流速的增加而提前,而床層高度的增加會使突破時間延後。吸附材顆粒大小及床層高度對於出口濃度C/Co值影響較為顯著,且系統Roll-over 的現象也隨著氣體流速的增加而愈明顯。在動態吸附實驗中,其貫流曲線斜率及出口濃度 C/Co 值最能代表系統行為,本研就藉由回應曲面法( Response surface methodology, RSM ),發現在進料濃度為92%、吸附材顆粒為1~2 mm、進料氣體流速為500 sccm及床層高度7 cm 速率下,為本研究實驗範圍內的佳操作條件。



In the distillation separation of ethanol vapor and water vapor, it can form an zoetrope at 78.2℃, at which there are 95.6wt% ethanol and 4.4wt% water. Traditional azeotropic distillation and extractive distillation to obtain anhydrous ethanol need more energy than adsorption. Adsorption as a low energy consumption process has attracted attention to apply in ethanol dehydration. Recently, some investigators have tried to use starch to replace Zeolite 3A. However, it has a low efficiency in adsorption selectivity and regeneration and starch powder was become glue after adsorption with water vapor. In the present study, starch was immobilized using sol-gel method to solve these problems. This study obtained adsorption equilibrium data by the BET experiment for water and ethanol on immobilized starch. Then isotherm curve and the parameters by numerical method and expressed by the Langmuir isotherm. The isotherm is applied to analyze the effect of the variables such as feed concentration, velocity, particle size and bed length on the breakthrough performance. Breakthrough curves of ethanol were measured by using a gas-phase FT-IR instead of traditional GC. Application of the gas-phase FT-IR could detect changes of gas concentration more fast than the traditional GC. Results showed that on influence of feed concentration, velocity, particle size and bed length is significant on different on breakthrough time and breakthrough curve shape. The effects of particle size and bed length on outlet concentration (C/Co) is significant, with increase of the velocity the roll-over
phenomenon is more obvious. In dynamic absorption, the slope of breakthrough curve and C/Co may represent mass transfer behavior. The optimum experimental parameters were expressed as follows: Inlet concentration: 92%, particle size: 1~2 mm, velocity: 500 sccm and the length of the bed: 7cm.



目次
摘要.............................................................................................................I
Abstract.....................................................................................................III
致謝............................................................................................................V
目次..........................................................................................................VI
圖目錄......................................................................................................IX
表目錄......................................................................................................XI
第1章 前言...............................................................................................1
1.1 簡介...............................................................................................1
1.2 生質酒精使用現狀.......................................................................2
1.3 吸附材之應用...............................................................................6
1.4 研究動機及目的...........................................................................8
第2章 文獻回顧與理論背景.............................................................10
2.1. 生質酒精原料與製程.............................................................10
2.1.1. 製作生質酒精的原料..........................................................10
2.1.2. 生質酒精製程......................................................................12
2.2. 常用醇水分離吸附材.............................................................14
2.2.1. 分子篩..................................................................................15
2.2.2. 吸附樹脂..............................................................................16
2.2.3. 生物吸附材..........................................................................16
2.3. 固定化澱粉.............................................................................17
2.3.1. 矽膠固定化..........................................................................17
2.3.2. 溶膠-凝膠過程....................................................................19
2.4. 吸附原理及吸附探討文獻.....................................................22
2.4.1. 吸附程序及其吸附劑選擇性.......................................25
2.4.2. 等溫平衡吸附曲線.......................................................26
2.5. 動態吸附理論.........................................................................30
2.5.1. 固定床最小流體化速度......................................................31
2.5.2. 質傳區簡化模型..................................................................33
第3章 材料與實驗方法.....................................................................36
3.1. 固定化澱粉質材料製備.........................................................36
3.1.1. 吸附材實驗藥品及儀器......................................................37
3.1.2. 吸附材製備流程..................................................................38
3.2. 動態吸附( Dynamic Adsorption )實驗...................................40
3.2.1. 動態吸附實驗設備及測量儀器..........................................42
3.2.2. 動態吸附實驗程序..............................................................49
第4章. 結果與分析.............................................................................52
4.1. 固定化澱粉質材料特性.........................................................53
4.2. 操作參數對貫流曲線影響.....................................................59
4.2.1. 流動相流率和接觸時間影響.......................................60
4.2.2. 床層高度的影響...........................................................63
4.2.3. 不同吸附材粒徑影響...................................................66
4.2.4. 濃度對貫流曲線的影響...............................................69
4.3. 回應曲面法分析實驗.............................................................72
第5章. 結論.........................................................................................79
參考文獻...................................................................................................81
Appendix...................................................................................................87


圖目錄
圖 1-1生質能源於自然界的碳循環體系................................................2
圖 2-1 第1代的生質酒精製法.............................................................13
圖 2-2酵素法水解糖化製程..................................................................14
圖 2-3 矽膠包埋過程.............................................................................19
圖 2-4溶膠-凝膠(Sol-Gel)技術發展歷史.............................................21
圖 2-5 等溫曲線圖.................................................................................27
圖 2-6 典型的Type I (Langmuir, Freundlich)吸附等溫曲線................28
圖 2-7 貫流曲線示意圖.........................................................................31
圖 2-8 壓力降與流速關係圖.................................................................32
圖 3-1 吸附材製備流程.........................................................................40
圖 3-2 動態吸附設計流程圖.................................................................41
圖 3-3 FTIR Chamber..............................................................................45
圖 3-4 FTIR Beam...................................................................................46
圖 3-5 乙醇-水之紅外線光譜................................................................47
圖 3-6動態吸附實驗裝置......................................................................49
圖 4-1 貫流曲線示意圖.........................................................................52
圖 4-2 等溫平衡曲線回歸比較圖.........................................................58
圖 4-3進料流速對澱粉質吸附材貫流曲線影響..................................61
圖 4-4 不同床層高度對澱粉質吸附材貫流曲線影響.........................64
圖 4-5 不同粒徑對澱粉質吸附材貫流曲線影響.................................67
圖 4-6 不同濃度對澱粉質吸附材貫流曲線影響.................................70
圖 4-7柏拉圖最佳集合解(Pareto optimal solution)..............................74
圖 4-8 Box-Behnken R-squred................................................................77
圖 4-9 JMP Prediction profiler................................................................78
圖 4-10 RSM 三維表面圖......................................................................78


表目錄
表格 1-1 高濃度無水酒精製程能量消耗比較..................................5
表格 1-2 低濃度無水酒精製程能量消耗比較 ................................5
表格 1-3 Ratio of water adsorptive capacity to ethanol adsorptive capacity..7
表格 2-1 物理吸附與化學吸附比較表.................................................24
表格 3-1 吸附材製備之實驗藥品.........................................................37
表格 3-2 吸附材製備之實驗儀器.........................................................38
表格 3-3 紅外線光譜區的劃分.............................................................43
表格 3-4 紅線光普對應之官能基.........................................................47
表格 4-1 Surface properties of the sorbents............................................53
表格 4-2 BET比表面積儀器氮氣吸附數據..........................................54
表格 4-3 吸附塔操作條件.....................................................................59
表格 4-4 不同進塔流速比較表.............................................................62
表格 4-5 不同床層高度比較表.............................................................65
表格 4-6 不同粒徑大小比較表.............................................................68
表格 4-7 不同進料濃度比較表.............................................................71
表格 4-8 實驗操作條件對應於JMP之因子..........................................75
表格 4-9 為JMP 回歸參數結果............................................................76
[1] 林祐生. 李文乾. 生質酒精, 科學發展, 433 期, 2009

[2] Serra A, Poch M, Sola C, “A Survey of Separation Systems for Fermentation Ethanol Recovery”, Process Biochemistry, 23,154-158, 1987.

[3] Ladishc M R, Dyck K K., “Dehydration of ethanol: New approach gives positive energy balance”, J. Science, 205, 898-900, 1979

[4] Ladiseh M R, Tsao G. T, “Vapor-Phase Dehydration of Aqueous alcohol Mixture”, Patent. US:4345973, 1982

[5] Pitt, W.W., G.L. Hagg and D.D. Lee, “Recovery of Ethanol from Fermentation Broths Using Selective Sorption-Desorption”, Biothernol. Bioeng., 25(1), 123-131, 1983.

[6] Farhadpour, F.A. and A. Bono, “Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite : Determination of the Controlling Mass Transfer Mechanism”, Chem. Eng. Process, 35(2),141-155, 1996

[7] Garg, D.R. and J.P. Ausikaitis, “Molecular Sieve Dehydration Cycle for High Water Content Stream”, Chem. Eng. Prog., 79(4), 60-65, 1983.

[8] Teo, W.K. and D.M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3A Molecular Sieves”, Ind. Eng. Chem. Process Des. Dev., 25(1), 17-21, 1986.

[9] Rao, D.R. and S. Sircar, “Liquid-phase Adsorption of Bulk Ethanol-Water Mixtures by Alumina”, Adsorpt. Sci. Technol., 10, 93-104, 1993.

[10] Ladisch, M.R., M. Voloch, J. Hong, P. Bienkowski and G.T. Tsao, “Cornmeal Adsorber for Dehydration Ethanol vapors”, Ind. Eng. Chem. Process Des. Dev., 23(3), 437-443, 1984.

[11] Anderson, L.E., M. Gulati, P.J. Westgate, E.P. Kvam, K. Bowman and M.R. Ladisch, “Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer”, Ind. Eng. Chem. Res., 35(4), 1180-1187, 1996.

[12] Berry, K.E. and M. R. Ladisch, “Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents”, Ind. Eng. Chem. Res., 40(9), 2112-2115, 2001.

[13] Vareli, G.D., P.G. Demertzis and K. Akrida-Demertzi, “Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems”, Z Lebensm Unters Forsch A, 205(3), 204-208, 1997.

[14] Dyck, K.; Ladisch, M. R., “Dehydration of Ethanol : New Approach Gives Positive Energy Balance”, American Association for the Advancement of Science. 205, 898-900, 1979.

[15] Al-Asheh, S., F. Banat and N. Al-Lagtah, “Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents”, Chem. Eng. Res. Des., 82(A7), 855-864, 2004.

[16] 王冠翔. 探討非傳統吸附材去除酒精中微量水分之研究. 中原大學, 2008.

[17] 劉祐維. 固定化生物吸附材於乙醇-水之吸附選擇性探討. 中原大學, 2010.

[18] Pruksathorn, P. and T. Vitidsant, “Production of pure ethanol from azeotropic solution by pressure swing adsorption”, Korean J. Chem. Eng., 26(4), 1106-1111, 2009.

[19] Simo, M., C. J. Brown and V. Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., 32(7), 1635-1649, 2008.

[20] Ladisch M R, Dyck K, “Dehydration of Ethanol: New Approach Gives Positive Energy Balance”, J. Science, 205, 898-900, 1979.

[21] 白坤.美國燃料乙醇生瓹,澱粉與澱耪糖. 1, 10-13, 2002

[22] Carmo M.J, Gubulin J.C , “Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermo-dynamic”, J. Chemica1 Engineering, 14(3), 217- 224, 1997

[23] Fawzi A, Bnaat, Fahmi A, Abu AI-Rub, Jnaa Simnadl. “Analysis of vapor-liquid equilibrium of ethanol-water systemvia headspace gas chromatography effect of molecular sieves”, J. Separation and Purification Technology, 18III-118, 2000

[24] Abu AI-Rub, Famhi A, “Vapor-liquid equilibrium of ethanol-water system in presence of molecular sieves”, J. Separation Science Technology, 34 (12), 2355-2368, 1999.

[25] Dyck, K.; Ladisch, M. R., “Dehydration of Ethanol : New Approach Gives Positive Energy Balance”, American Association for the Advancement of Science. 205, 898-900, 1979.

[26] Liadisch, M. R.; Monke, K., “Characterization of the Swelling of a Size-Exclusion Gel”, Biotechnol. Prog, 6, 376-382, 1990.

[27] Liadisch, M. R.; Westgate, P. J., “Sorption of Organics and Water on Starch.” , Ind. Eng. Chem. Res. 32, 1676-1680, 1993.

[28] Liadisch, M. R., “Biobased Adsorbent for Drying of Gases. Enzyme and Microbial”, Technology. 20, 162-164, 1997.

[29] Guisan, J. M., “Immobilization of Enzymes and Cells”, Humana Press, 2006.

[30] 黃劍鋒, 溶膠-凝膠原理與技術. 化學工業出版社, 2005.

[31] 章裕民,環境工程化學.文京, 135-140, 1998

[32] 楊萬發, 譯水及廢水處理化.學國立編譯館, 1992

[33] Ruthven, D.M., “Principles of adsorption and adsorption processes”, John Wiley & Sons 1984.

[34] Hines, A.L., and R.N. Maddox, “Mass Transfer Fundamentals and Applications”, Prentice Hall PTR, 1984.

[35] Smith, J.M., H.C. Van Ness, and M.M. Abbott, “Introduction to chemical engineering thermodynamics”, McGraw-Hill Professional New York 536-553, 1996.

[36] 李國希, 吸附科學. 化學科工業出版社, 2007.

[37] Webb, P. A.; Orr, C., “Analysis Methods in Fine Particle Technology”, Micromeritics Instrument Corporation, 1997.

[38] Langmuir, I., “Adsorption of gases by solid”, J. Am .Chem. Soc 38(10), 2267, 1916.

[39] Langmuir, I., “Adsorption of gases on plane surface of glass mica and platinum”, J. Am. Inst Chem. Soc, 1918.

[40] Ruthven, D.M., “Principles of adsorption and adsorption processes”, John Wiley & Sons 1984.

[41] 徐偉華、盧廷政, 利用磁場促進生物流體化床反應器性能之探討, 2008
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top