|
[1.1]Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard 802.16, 2004. [1.2]Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard 802.16e, 2005. [1.3]R. Bagheri, A. Mirzaei, M. E. Heidari, S. Chehrazi, M. Lee; M. Mikhemar, W. K. Tang, and A. A. Abidi, “Software-defined radio receiver: dream to reality,” IEEE Communication Magazine, vol. 44, no. 8, pp. 111–118, Aug. 2006. [1.4]J. Mitola, “The software radio architecture,” IEEE Communication Magazine, vol. 33, no. 5, pp. 26–38, May 1995. [1.5]H. Yoshida, S. Otaka, T. Kato, and H. Tsurumi, “A software defined radio receiver using the direct conversion principle: implementation and evaluation,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, 2000, pp.1044–1048. [1.6]R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee; M. Mikhemar, W. Tang, and A. A. Abidi, “An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp.2860–2876, Dec. 2006. [1.7]A. A. Abidi, “The path to the software-defined radio receiver,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp.954–966, May. 2007. [1.8]F. Agnelli, G. Albasini, I. Bietti, A. Gnudi, A. Lacaita, D. Manstretta, R. Rovatti, E. Sacchi, P. Savazzi, F. Svelto, E. Temporiti, S. Vitali, and R. Castello, “Wireless multi-standard terminals: system analysis and design of a reconfigurable RF front-end,” IEEE Circuit and System Magazine, vol. 6, no. 1, pp. 38–59, first quarter 2006. [2.1]J. Mitola, “The software radio architecture,” IEEE Communication Magazine, vol. 33, no. 5, pp. 26–38, May 1995. [2.2]H. S. Choi, Q. D. Bui, S. Y. Kang, J. Y. Jang, U. B. Lee, C. H. Chun, I. Y. Oh, and C. S. Park, “A 0.75–6.75 GHz receiver with a digitally controlled LO generator for software-defined radio,” in Proc. IEEE IMWS, Feb. 2010. [2.3]B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “Resistive-feedback CMOS low-noise amplifiers for multiband applications,” IEEE Transaction on Microwave Theory and Techniques vol. 56, no. 5, pp. 1218–1225, May 2008. [2.4]H. K. Chen, D. C. Chang, Y. Z. Juang, and S. S. Lu, “A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 616-618, Aug. 2007. [2.5]Behzad Razavi, “RF Microelectronics,” Prentice Hall, 1998. [3.1]J. Mitola, “The software radio architecture,” IEEE Communication Magazine, vol. 33, no. 5, pp. 26–38, May 1995. [3.2]R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee, M. Mikhemar, W. Tang, and A. A. Abidi, “An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2860-2876, Dec. 2006. [3.3]H. S. Choi, Q. D. Bui, S. Y. Kang, J. Y. Jang, U. B. Lee, C. H. Chun, I. Y. Oh, and C. S. Park, “A 0.75–6.75 GHz receiver with a digitally controlled LO generator for software-defined radio,” in Proc. IEEE IMWS, Feb. 2010. [3.4]M. Cao, B. Chi, C. Zhang, and Z. Wang, “A 1.2V 0.1–3GHz software-defined radio receiver front-end in 130nm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2011, pp. 1–4. [3.5]V. Giannini, P. Nuzzo, C. Soens, K. Vengattaramane, J. Ryckaert, M. Goffioul, B. Debaillie, J. Borremans, J. Van Driessche, J. Craninckx, and M. Ingels, “A 2-mm2 0.1–5 GHz software-defined radio receiver in 45-nm digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3486-3498, Dec. 2009. [3.6]C. R. Wu, H. H. Hsieh, L. S. Lai, and L. H. Lu, “A 3–5 GHz frequency-tunable receiver frontend for multiband applications,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 638–640, Sep. 2008. [3.7]H. K. Chen, D. C. Chang, Y. Z. Juang, and S. S. Lu, “A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 616–618, Aug. 2007. [3.8]H.-K. Chen, Y.-S. Lin, and S.-S. Lu, “Analysis and design of a 1.6–28-GHz compact wideband LNA in 90-nm CMOS using a π-match input network,” IEEE Transaction on Microwave Theory and Techniques, vol. 58, no. 8, pp. 2092-2104, Aug. 2010. [3.9]S.-C. Tseng, C. C. Meng, C.-H. Chang, C.-K. Wu, and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated marchand balun using standard silicon IC process,” IEEE Transaction on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4362-4371, Dec. 2006. [3.10]C. C. Meng, T. H. Wu, T. H. Wu, and G. W. Huang, “A 5.2 GHz 16 dB gain CMFB Gilbert downconversion mixer using 0.35 μm deep trench isolation SiGe BiCMOS technology,” in IEEE MTT-S International Microwave Symposium Dig., Fort Worth, TX, Jun. 2004, pp. 975–978. [3.11]F. Piazza and Q. Huang, “A high linearity, single-ended input double-balanced mixer in 0.25μm CMOS,” in Proc. IEEE ESSCIRC, Sep. 1998. [3.12]M. T. Terrovitis and R. G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999. [3.13]H. K. Chen, Y. C. Hsu, T. Y. Lin, D. C. Chang, Y. Z. Juang, and S. S. Lu, “CMOS wideband LNA design using integrated passive device,” in IEEE MTT-S International Microwave Symposium Dig., 2009, pp. 673–676. [4.1]C. S. Wang, W. C. Li, and C. L. Wang, “A multi-band multi-standard RF front-end for IEEE 802.16a and IEEE 802.11 a/b/g applications,” in Proc. IEEE International Symposium on Circuit and Systems, pp. 3974–3977, May 2005. [4.2]A. Liscidini, M. Brandolini, D. Sanzogni, and R. Castello, “A 0.13 μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 981-989, Apr. 2006. [4.3]P. Rossi, A. Liscidini, M. Brandolini, and F. Svelto, “A 2.5dB NF direct-conversion receiver front-end for HiperLAN2/IEEE802.11a,” in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, Feb. 2004, vol. 1, pp. 102–103. [4.4]C. R. Wu, H. H. Hsieh, L. S. Lai, and L. H. Lu, “A 3–5 GHz frequency-tunable receiver frontend for multiband applications,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 638-640, Sep. 2008. [4.5]K. Phansathitwong, H. Sjoland, and P. Andreani, “Low power multi-band CMOS receiver front-end,” in Proc. IEEE International Conference on Ph.D. Research in Microelectronics and Electronics, pp. 1–4, Jul. 2010. [4.6]Y.-H. Wang, K.-T. Lin, T. Wang, H.-W. Chiu, H.-C. Chen, and S.-S. Lu, “A 2.1 to 6 GHz tunable-band LNA with adaptive frequency responses by transistor size scaling” IEEE Microwave and Wireless Components Letters, vol.20, no.6, pp.346-348, June 2010. [4.7]T. Wang, H.-C. Chen, H.-W. Chiu, Y.-S. Lin, G.-W. Huang and S.-S. Lu, “Micromahcined CMOS LNA and VCO ny CMOS-compatible ICP deep trench technology,” IEEE Transaction on Microwave Theory and Techniques, vol. 54, no. 2, pp. 580-588, Feb. 2006. [4.8]S. S. Lu and H. W. Chiu, “Authors’ Reply [to comments on A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption]” IEEE Transaction on Microwave Theory and Techniques, vol. 57, no. 10, pp. 2472-2473, Oct. 2009. [4.9]H. W. Chiu, S. S. Lu, and Y. S. Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption” IEEE Transaction on Microwave Theory and Techniques, vol. 53, no. 3, pp. 813-824, Mar. 2005. [4.10]D. K. Shaeffer and T. H. Lee, “ A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997. [4.11]Y. Nemirovsky, I. Brouk, and C. G. Jakobson, ”1/f Noise in CMOS transistors for analog applications,” IEEE Transaction on Electron Devices, vol. 48, no. 5, pp. 921-927, May 2001. [4.12]A. Arnaud and C. Galup-Montoro, ”A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Transaction on Electron Devices, vol. 50, no. 8, pp. 1815-1818, Aug. 2003. [4.13]Z. Li, J. Ma, Y. Ye, and M. Yu, ”Compact channel noise models for deep-submicron MOSFETs,” IEEE Transaction on Electron Devices, vol. 56, no. 6, pp. 1300-1308, Jun. 2009. [4.14]A. J. Scholten, L. F. Tiemeijer, R. V. Langevelde, R. J. Havens, A. T. A. Z. Duijnhoven, and V. C. Venezia, ” Noise modeling for RF CMOS circuit simulation, IEEE Transaction on Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003. [B.1]F.-W. Trautnitz, “EMC Absorbers through the Years with Respect to the New Site VSWR Validation Procedure in the Frequency Range from 1 to 18 GHz - a Practical Approach,” IEEE Symposium of EMC, Qingdao in China 2007. [B.2]I. Huynen, C. Steukers, and F. Duhamel, “A wide-band line-line dielectrometric method for liquids, soils, and planar substrates,” IEEE Transaction on Instrumentation and Measurement, vol. 46, no. 4, pp. 102–106, Oct. 2001. [B.3]A. Saib, L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.-M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jerome, and I. Huynen, “Carbon nanotube composites for broadband microwave absorbing materials,” IEEE Transaction on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2745–2754, Jun. 2006. [B.4]V. B. Bregar, “Advantages of ferromagnetic nanoparticle composites in microwave absorbers,” IEEE Transaction on Magnetic, vol. 40, no.3 pp. 1679–1684, May 2004. [B.5]S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption properties of carbon microcoils in 12~110GHz region,” Journal of Applied Physics, vol. 94, no. 4, pp. 2325–2330, Aug. 2003. [B.6]B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE Journal of Solid State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006. [B.7]I. Gresham, N. Jain, T. Budka, A. Alexanian, N. Kinayman, B. Ziegner, S. Brown, P. Staecker, “A compact manufacturable 76-77-GHz radar module for commercial ACC applications,” IEEE Transaction on Microwave Theory and Techniques, vol. 49, no. 1, pp. 44–58, Jan. 2001. [C.1]M. Sun and Y. P. Zhang, “100-GHz quasi-Yagi antenna in silicon technology,” IEEE Electron Device Letter, vol. 28, no. 5, pp. 455–457, May 2007. [C.2]S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-μm CMOS technology,” IEEE Electron Device Letter, vol. 29, no. 6, pp. 625–627, Jun. 2008. [C.3]X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS monolithically integrated subterahertz transmitter,” IEEE Electron Device Letter, vol. 32, no. 9, pp. 1182–1184, Sep. 2011. [C.4]A. Mehdipour, I. D. Rosca, A.-R. Sebak, C. W. Trueman, and S. V. Hoa, “Full-composite fractal antenna using carbon nanotubes for multiband wireless applications,” IEEE Antenna Wireless Propagation Letter, vol. 9, pp. 891–894, 2010. [C.5]A. Mehdipour, T. A. Denidni, A.-R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, “Nonmetallic dielectric resonator antenna using carbon nanotube composite materials,” IEEE Antenna Wireless Propagation Letter, vol. 11, pp. 1293–1295, 2012. [C.6]T. Rai, P. Dantes, B. Bahreyni, and W. S. Kim, “A stretchable RF antenna with silver nanowires,” IEEE Electron Device Letter, vol. 34, no. 4, pp. 544–546, Apr. 2013. [C.7]A. Mehdipour, I. D. Rosca, A.-R. Sebak, C. W. Trueman, and S. V. Hoa, “Carbon nanotube composites for wideband millimeter-wave antenna applications,” IEEE Transaction on Antenna Propagation, vol. 59, no. 10, pp. 3572–3578, Oct. 2011. [C.8]J. J. Plombon, K. P. O’Brien, F. Gstrein, V. M. Dubin, and Y. Jiao, “High-frequency electrical properties of individual and bundled carbon nanotubes,” Applied Physics Letter, vol. 90, pp. 063106-1–3, 2007. [C.9]S. Choi and K. Sarabandi, “Design of efficient terahertz antennas: carbon nanotube versus gold,” in Proc. IEEE Antenna Propag. Soc. Int. Symp., Jul. 2010. [C.10]K.-T. Lin, J.-Y. Hsieh, Y.-J. Chen, S.-H. Chang, Y.-J. Yang, and S.-S. Lu, “Gold plating carbon nanotube antenna integrated with voltage control oscillator,” PIERS, pp. 1726-1729, Aug. 2013 Stockholm, Sweden. [C.11]T.-C. Wu and S.-H. Chang, “Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest,” ELSEVIER Current Applied Physics, vol. 9, pp. 1117–1121, Jan. 2009. [C.12]P. J. Burke, “An RF circuit model for carbon nanotubes,” IEEE Transaction on Nanotechnology, vol. 2, no. 1, pp. 55–58, Mar. 2003. [C.13]A. Hajimiri and T. H. Lee, “Phase noise in CMOS differential LC oscillators,” in Proc. Symp. VLSI Circuits, pp. 48–51, Jun. 1998. [C.14]A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998. [C.15]T. H. Lee and A. Hajimiri, “Oscillator Phase Noise: A Tutorial.” IEEE Journal of Solid-State Circuits, vol. 35, no.3, pp. 326–336, March 2000. [C.16]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., Orlando, FL, 2000, pp. 569–572. [C.17]P. Andreani, X.Wang, L. Vandi, and A. Fard “A Study of Phase Noise in Colpitts and LC-Tank CMOS Oscillator,” IEEE Journal of Solid-State Circuits, vol. 40, no.5, pp. 1107–1178, May 2005. [C.18]A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd Edition, Prentice Hall, New Jersey 1983. [C.19]V. Mangulis, Handbook of Series for Scientists and Engineers, Academic Press, New York 1965. [C.20]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge Univ. Press, 1998. [C.21]P. Andreani and A. Fard “More on the 1/f2 Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillator,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2703–2712, Dec. 2006. [C.22]C. Samori, A. L. Lacaita, F. Villa, and F. Zappa, “Spectrum Folding and phase noise in LC tuned oscillators,” IEEE Transaction on Circuits System II, vol. 45, no.7, pp. 781–790, July 1998. [C.23]A. Jerng and C. G. Sodini, “The Impact of Device Type and Sizing on Phase Noise Mechanisms,” IEEE Journal of Solid-State Circuits, vol. 40, no.2, pp. 360–369, Feb. 2005.
|