跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊錦源
研究生(外文):Chin-Yuan Chuang
論文名稱:九年一貫課程實施前後國中學生數學成就及錯誤概念之研究
論文名稱(外文):A Study on the Impact of Nine-year Intergrated Curriculum over Junior High School Students’ Mathematic Performances and Misconception
指導教授:吳裕益吳裕益引用關係左太政左太政引用關係
指導教授(外文):Yu-Yi WuTai-Zheng Zuo
學位類別:博士
校院名稱:國立高雄師範大學
系所名稱:教育學系
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:270
中文關鍵詞:九年一貫課程國中學生數學成就錯誤概念錯誤原因數學能力
外文關鍵詞:Nine-year intergrated CurriculumJunior High School StudentsMathematic CompetenceMathematic AchievementMisconceptionReason of Error
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1229
  • 評分評分:
  • 下載下載:386
  • 收藏至我的研究室書目清單書目收藏:5
本研究主要目的在探討及分析國中學生在基測數學科之數學成就及錯誤概念,並了解九年一貫課程實施前後國中學生在基測數學科試題內容之表現情形。本研究係以「國中基測91、93、95、97年第一次數學科試題全國性抽樣調查的國中學生為分析對象每年和選取5,000名,區分性別、區域、分領域的差異性。本研究使用的統計分析方法包括描述性統計」。及單因子變異數分析、t考驗等。
本研究主要發現如下:
一、 四個年度試題參數之比較:
93年度試題區別受試者能力效果較佳,而91年度試題較不易有效區別受試者能力。
二、 四個年度各領域試題難度參數之比較:
代數91年最難,97年最易;幾何91年最難,93年最易;量數與機統91年最難,93年最易;以年度來說均以幾何最難,93、95年量數與機統最易,但91、97年代數最易。

三、不同年度考生整體數學能力之比較:
97年受試者能力優於95年,95年優於91、93年,顯見九年一貫課程實施後學生能力更優。

四、不同年度男女生整體數學能力之比較:
四個年度性別方面男女受試者能力沒有顯著差異。

五、不同年度各區域受試者之整體數學能力之比較
95年沒有顯著差異。但91、93、97年均有顯著差異。

六、不同年度受試者三個數學領域能力之比較:
三個數學領域四個年度受試者學能力估計值平均數均有顯著差異。代數:97年最優;幾何:95、97年最優;量數與機統:97年最優。

七、不同年度男女生三個數學領域能力之比較
男女生在三個數學領域能力估計值平均數均有顯著差異。
1.男生:代數:93年最差;幾何:95、97年較優;量數與機統:97年最優。
2.女生:代數:93年最差;幾何:95、97年較優;量數與機統:97年最優。

八、不同年度各區域受試者,三個數學領域能力之比較
北、中、南、東及離島四個區域數學能力估計值平均數均有顯著差異。
1.北區:代數:91、97年較優;幾何:97年最優,91年最差;量數與機統:97年最優。
2.中區:代數:91、97年較優;幾何:91年最差;量數與機統:97年最優。
3.南區:代數:93年最差;幾何:95年最優;量數與機統:95、97年最優。
4.東區及離島:代數:95、97年較優;幾何:95年最優;量數與機統:95、97年較優。

九、各年度每個內容領域答錯率較高的問題錯誤概念:代數有6題,幾何、量數與機統各5題,顯然各領域均有學生困難之所在,均有加強補救之必要。

十、各年度錯誤選答率偏高超過四成以上的題數分析,全體有1題是91年度
的;低分組有8題,91、97年度各1題,但93年度有6題之多,95年度沒有。大部分題目均為九年一貫實施之前,顯然學生數學能力並未降低,反而升高之趨勢。對低分組學生更要發揮愛心、耐心、加強補救教學,把每一個學生均帶上來。

十一、錯誤類型以:概念不清,推理無據,忽視條件,考慮不周來分析,分數學三大領域來討論。根據研究結果,本研究如何對提昇學生數學成就及未來研究提出若干建議,以供學生、家長、教師、學校行政、基測中心及教育機關作參考。


The main purpose of this thesis is to analyze the mathematic achievement of Junior High school students who had taken the basic competence test and their misconception of the test. Also the aim is to monitor the differnces of Junior High school students’ mathematic achivement after implementing the nine-year intergrated curriculum.
The thesis has taken sample survey on the Junior high school students who had taken the mathematic test in the basic competece test in the year of 91, 93, 95 and 97. Using gender, geographical areas and aspects of mathematic to distinguish the differnces in the test. The statistical analysis methods used in the thesis are descriptive statistic, one-way ANOVA and T-test.

The main findings in the research are as below:
1. The comparison of parameters between 4 years of basic competence tests:
The test of 93 has made better distinction on students’ competence; the test of 91 has not efficiently distinguish students’ competence.

2. The comparison of difficulty parameters in different subjects:
In algebra, test of year 91 presents to be most difficult, but that in year 97 are the easiest. In geometry, test in 91 are the most difficult, but those in 97 are the easiest. The test of measures, probability and statistics, test in 91 are the most difficult, but those in 93 are the easiest. To sum up, geometry test remain the hardest every year; in the year of 93 and 95, test of measures, probability and statistics, are the easiest; in the year of 91 and 97, test of algebra remain the easiest.

3. The comparison of general mathmetic competence between students’ of different school years: Subjects of school year of 95 perform better than those in 95. Subjects in school year of 95 perform better than those in 91 and 93. Apparently, students attain higher achievement after the nine-year integrated curriculum.

4. The gender based comparison of general mathematice achievement in different school years: Results show no substantial discrepancy between the mathematic achievement of different genders.

5. The comparison of mathematic competence in different areas and different years. The results shows no discrepancy in year of 95, but much in 91, 93 and 97.

6. The comparison between achievement in three mathematic domains in different school years:
The average estimators of the subjects’ achievement in three mathematic domains
Denot substantial discrepancy in different school years. To be precise, as to the domain of algebra, the performance in year of 97 has been outstanding. In geomatry, the performances in 95 and 97 clain the best. As the study of measures, probability and statistics, the performance in 97 claims the best.

7. The gender based comparison of mathematic achievement in three domains in different school years: The averagre estimators of boys and girls achievement indicate substantial discrepancy in three mathematic domains.
(1) Boys:In algebra, the performance in the year of 93 is graded the worst. In geometry, the performances in 95 and 97 claims the best. In the study of measures, probability and statistics, the performance in 97 claims the best.
(2) Girls:In algebra, the performance in the year of 93 is graded the worst. In geometry, the performances in 95 and 97 claim the best. In the study of measures, probability and statistics, the performance in 97 claims the best.

8. The comparison of mathematic achievements attained by subjects from different areas in terms of three mathematic domains in different school years. The average estimators of the mathematic competece perofrmed by subjects from the north, central, south and eastern parts of Taiwan, including the outlying islands, manifest substantial discrepancy.
(1) Northern Taiwan: In algebra, the performances in the year of 91 and 97 present better. In geometry,, the performance in 97 claims the best, but that in 91 is graded the worst. As to the study of measures, probability and statistics the performance in 97 claims the best.
(2) Central Taiwan: In algebra, the performance in the year of 93 presents better than the rest. In geometry, the performance in 91 is graded the worst. As to the study of measures, probability and statistics, the performance in 97 claims the best.
(3) Southern Taiwan: In algebra, the performance in the year of 93 presents the worst. In geometry, the performance in 95 is graded the best. As to the study of measures, probability and statistics, the performances in 95 and 97 claim the best.
(4) Eastern Taiwan: In algebra, the performance in the year of 95 and 97 present better. In geometry, the performance in 95 is graded the best. As to the study of measures, probability and statistics, the performances in 95 and 97 claim the best.

9. All areas of the mathematical part in the basic competence test which has higher rates of misconceptions are: Algebra: 6 errors ; Geomatry, Measures, probability and statistics: 5 errors each. Each area shows misconception of the students which and indicates further needs of teaching assistance.

10. Analyzation of incorrect test item ratio which were over 40% in basic competence test. Most of the errors appears to be in the years which nine-year integrated curriculum have not been taken place. This implies that the students’ ability have not declined but improved. Therefore, we should put more effort in strengthing students with lower performances and try to assist every student.

11. Types of misconceptions: unclear concept, reasoning without sufficent evidence , neglected conditions, inconsiderate analyzation.

According to the research results, the thesis has given several suggestions in how to elevate students’ mathematic competence. These conclusions may be taken into consideration for students, parents, teachers and other administrations in the future and for further research.

第一章 緒論 1
第一節 研究背景與動機……………………………………………… 1
第二節 研究目的與待答問題………………………………………… 2
第三節 名詞釋義……………………………………………………… 3
第四節 研究範圍與限制……………………………………………… 4

第二章 文獻探討 5
第一節 九年一貫數學領域課程……………………………………… 5
第二節 概念的意義與數學概念的學習……………………………… 11
第三節 數學解題歷程的探討………………………………………… 15
第四節 數學錯誤概念及原因的相關研究…………………………… 21
第五節 影響數學成就之相關理論…………………………………… 36
第六節 試題分析之相關研究………………………………………… 41

第三章 研究方法 43
第一節 研究設計與架構……………………………………………… 43
第二節 研究對象……………………………………………………… 45
第三節 研究工具……………………………………………………… 46
第四節 研究程序……………………………………………………… 48
第五節 資料處理與分析……………………………………………… 50

第四章 結果與討論 52
第一節 不同年度試題參數分析……………………………………… 52
第二節 不同年度、性別與區域考生整體數學能力之比較………… 55
第三節 不同年度、性別與區域受試者分領域數學能力之比較…… 61
第四節 四個年度學生錯誤概念之分析比較………………………… 70

第五章 研究結果與建議 118
第一節 結論…………………………………………………………… 118
第二節 研究建議……………………………………………………… 128

參考文獻 131


附錄一 91、93、95、97年國中第一次基測數學科試題…………… 141
附錄二 九年一貫課程實施前後影響國中學生數學成就及錯誤概念之研究………………………………………………………… 177
附錄三 歷屆試題彙編之解題能力與錯誤概念分析………………… 186
附錄四 數學專家教師的學歷及服務學校…………………………… 210
附錄五 數學專家教師的建議及共同意見…………………………… 211
附錄六 四個年度學生數學錯誤概念分析…………………………… 222
附錄七 91年度高中低分組受試者選答百分比…………………… 226
附錄八 93年度高中低分組受試者選答百分比…………………… 237
附錄九 95年度高中低分組受試者選答百分比………………… 248
附錄十 97年度高中低分組受試者選答百分比…………………… 259

表 次

表2-1 九年一貫課程教學領域七~九年級之能力指標與階段能力指標之指標對照表…………………………………………… 7
表3-1 各年度基測中心提供人數表………………………………… 45
表3-2 各年度數學課程實施分析表………………………………… 46
表3-3 91-97數學評量數學內容向度分類………………………… 47
表3-4 91-97數學評量數學能力向度分類………………………… 47
表3-5 共同試題在數學內容與能力雙向細目表…………………… 48
表4-1 四個年度的試題參數描述統計摘要表……………………… 53
表4-2 四個年度各領域試數難度描述統計摘要表………………… 53
表4-3 四個年度的受試者整體數學能力之描述統計及變異數分析摘要表………………………………………………………… 56
表4-4 各年度不同性別受試者能力描述統計及獨立樣本之檢定摘要表…………………………………………………………… 56
表4-5 不同年度各區域考生數學能力描述統計及其變異數分析摘要表…………………………………………………………… 58
表4-6 不同年度各區域受試者整體數學能力之比較……………… 60
表4-7 四個年度受試者在三個數學領域能力估計值描述統計與變異數分析摘要表……………………………………………… 61
表4-8 不同年度男受試者在三個數學領域能力估計值描述統計與異變數分析摘要表……………………………………………… 63
表4-9 不同年度女受試者在三個數學領域能力估計值描述統計與異變數分析摘要表……………………………………………… 64
表4-10 不同年度北區受試者在三個數學領域能力估計值描述統計與異變數分析摘要表……………………………………………… 65
表4-11 不同年度中區受試者在三個數學領域能力估計值描述統計與異變數分析摘要表……………………………………………… 66
表4-12 不同年度南區受試者在三個數學領域能力估計值描述統計與異變數分析摘要表……………………………………………… 67
表4-13 不同年度東區離島受試者在三個數學領域能力估計值描述統計與異變數分析摘要表………………………………………… 68
表4-14 試題1答題結果與錯誤類型統整表…………………………… 71
表4-15 試題2答題結果與錯誤類型統整表…………………………… 73
表4-16 試題3答題結果與錯誤類型統整表…………………………… 75
表4-17 試題4答題結果與錯誤類型統整表…………………………… 77
表4-18 試題5答題結果與錯誤類型統整表…………………………… 79
表4-19 試題6答題結果與錯誤類型統整表…………………………… 81
表4-20 試題7答題結果與錯誤類型統整表…………………………… 83
表4-21 試題8答題結果與錯誤類型統整表…………………………… 85
表4-22 試題9答題結果與錯誤類型統整表…………………………… 87
表4-23 試題10答題結果與錯誤類型統整表…………………………… 89
表4-24 試題11答題結果與錯誤類型統整表…………………………… 91
表4-25 試題12答題結果與錯誤類型統整表…………………………… 93
表4-26 試題13答題結果與錯誤類型統整表…………………………… 95
表4-27 試題14答題結果與錯誤類型統整表…………………………… 97
表4-28 試題15答題結果與錯誤類型統整表…………………………… 99
表4-29 試題16答題結果與錯誤類型統整表…………………………… 101
表4-30 四個年度全體受試者及高分組、低分組主要數學錯誤概念題數比較………………………………………………………………… 103
表4-31 試題17答題結果與錯誤類型統整表…………………………… 104
表4-32 試題18答題結果與錯誤類型統整表…………………………… 105
表4-33 試題19答題結果與錯誤類型統整表…………………………… 107
表4-34 試題20答題結果與錯誤類型統整表…………………………… 108
表4-35 試題21答題結果與錯誤類型統整表…………………………… 110

圖 次

圖2-1 圓錐形的概念模型……………………………………………… 13
圖2-2 schoenfeld的解題策略基模大綱……………………………… 18
圖3-1 研究流程圖……………………………………………………… 43
圖3-2 91至97年共同考生等化研究設計…………………………… 44
圖3-3 研究架構………………………………………………………… 45
圖3-4 實施流程圖……………………………………………………… 50
圖4-1 四個年度各領域試數難度折線圖……………………………… 54
圖4-2 各年度不同性別受試者能力折線圖…………………………… 57
圖4-3 不同年度各區域受試者數學能力折線圖……………………… 59
圖4-4 四個年度受試者在三個數學領域能力折線圖………………… 62

一、 中文部份
九章出版社編輯部(1998)。錯誤辨析。台北市:九章。
王文中(1999)。教育測驗與評量-教室學習觀點。台北:五南。
王如敏(2004)。國中學生解一元一次方程式錯誤類型分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
王淑琴、郭重吉(1994)。利用DOE唔談探究大學生電學方面的另有架構。科學教育,5,117-139。
余民寧(1997)。成就測驗的編製原理。台北:心理。
余庭瑋(2008)。國二學生在數形關係與等差數列之錯誤類型分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
吳勇賜(2005)。台北地區國一學生數、形規律單元之錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
吳慧珠(2001)。國民中小學學生生命概念發展之研究。國立高雄師範大學教育學系研究所博士論文。
呂溪木(1983)。從國際科展看我國今後科學教育的發展方向。科學教育月刊,64,13-19。
李浩然(2003)。高雄市國一學生分數乘除法運算錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
李默英(1982)。性別、年級、數學學習態度、性別角色與數學成就之關係。政治大學教育研究所碩士論文,未出版,台北市。
林士哲(2005)。九年一貫台南縣地區國二學生學習乘法公式與商高定理單元之錯誤類型之調查研究 。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
林育樹(2007)。台南市國一學生指數概念及與運算錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
林建文(2008)。屏東地區國一學生解二元一次聯立方程式錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
林清山、張景媛(1993)。輔導學系教育心理學報,26,115-137。
林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。教育心理學報,27,35-62。
林義雄,陳澤民 譯(1996)。Richard, R. Skemp著:數學學習心理學。台北市:九章出版社。
林福來(1991)。數學的診斷評量。教師天地,54,32-38。
林碧珍、蔡文發(2005)。TIMSS 2003臺灣國小四年級學生的數學成就及其相關因素之探討。戴於張秋男(主編)(2003)。國際數學與科學教育成說趨勢調查,125-164。臺北市:國立臺灣師範大學科學教育中心。
邱上真(1992)。國小中年級數學科解題方程導向之評量。特殊教育與後健學報,2,235-273。
祝仰溱(2003)。高職生數學解題方程運算錯誤類型之研究-以圓為例。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
李芳妹(1993)心理與教育研究法。台北縣,精華書局。
柳賢(2001)。數學科概念評核工具之開發與應用。香港中文大學教育學院課程與教學系及香港數學教育學會出版,87-90。
胡炳生(1997)。數學解題思維方法。台北市:九章。
涂佩瑜(2004)。國中生解二元一次聯立方程式錯誤類型分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。

張立群(2003)。台南地區國一學生整數的加減法單元錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
張芳全(2008)。數學成就的城鄉差距探討:以TIMSS 為例。國民教育,48(6),22-29。
張春興(1995)。張氏心理學辭典。台北市:東華書局。
張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,75-200。
張鳳燕(1991)。從概念學來談國小數學教育。師友月刊,284。
教育部(2003)。九年一貫課程綱要數學學習領域。台北:教育部。
梁淑坤(1996)。研究與教學合一--以分析「一元二次方程式」的錯誤為一個例子。嘉義師範學報,10,455-472。
莊淑鈴(2005)。高雄地區國二學生解二元一次聯立方程式錯誤類型之分析。國立高雄師範大學教育系碩士論文,未出版,高雄市。
郭丁熒(1992)。追根究底談錯誤-有關學生錯誤的二十個問題。國教之友,44(2),17-23。
郭正仁(2001)。高雄市國二學生多項式四則運算錯誤類型之研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
郭生玉(1985)。心理與教育測驗。台北:精華。
陳志全(2005)。國二學生「用配方法解一元二次方程式」單元之錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
陳忠志(2000)。透過遠距網路進行理化教學輔導研究。中華民國第十六屆科學教育學術研討會論文彙編,833-838。
陳英豪、吳裕益(1992)。測驗與評量,第四版。高雄:復文。
陳麗玲(1993)。國小數學學障學生計算錯誤類型分析之研究。國立彰化師範大學特殊教育研究所碩士論文,未出版,彰化。
黃台珠(1984)。概念的研究及其意義。科學教育月刊,66,44-56。
劉貞宜(2000)。數學資優生的解題歷程分析-以建中三位不同能力的數學資優生為例。國立台灣師範大學特殊教育研究所論文,未出版,台北市。
曹博盛(2005)。TIMSS 2003臺灣國中二年級學生的數學成就及其相關因素之探討。戴於張秋男(主編)。國際數學與科學教育成說趨勢調查,55-94。臺北市:國立臺灣師範大學科學教育中心。
曾筱倩(2008)。台南縣國一學生分數四則運算錯誤類型之分析。國立高雄師範大學數學研究所論文,未出版,高雄市。
游恆山(1993)。變態心理學。台北:五南。
游鯉謙(2004)。台中地區國二學生在坐標平面單元之錯誤類型分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
黃上豪(2005)。高市國三學生在圓單元錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
黃敏晃(1998)。數學年夜飯。台北:心理出版社。
楊溲亮(1997)。國中生後設認知,動機信念及數學學習之關係暨代數應用題數學策略效果之評估。國立台灣師範大學教育心理與教學法通論。台北市:九章出版社。
楊瑞智(1990)。 四則運算類型研究及數學上的應用。國教月刊,36(9,10),18-25。
楊榮祥(1992)。解釋研究法在科學教育研究上的運用。科學發展月刊,2015,539-547。
蔡育霖(2005)。嘉義地區八年級學生一元一次方程式單元錯誤類型之分析研究。國立高雄師範大學教育系碩士論文,未出版,高雄市。
簡茂發等人(1996)教育部85年度國民教育階段學生基本成就學習評量研究研究報告。台北:國立臺灣師範大學中等學校研習中心。
簡茂發等人(1999)。教育部八十六、八十七年度國民教育階段學生基本成就學習評量研究研究報告。台北:國立臺灣師範大學科學教育中心。
蘇慧娟(1998)。高雄地區國二學生方根概念及運算錯誤類型之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
二、英文部分
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education (1999). Standards for educational and Psychological testing. Washington, DC: American Psychological Association.
Becker, B. J. (1990). Item characteristics and gender differences on the SAT-M for mathematically able youths. American Educational Research Journal,27, 65-87.
Benbow, C. P. & Stanley, J. C. (1983). Sex difference in mathematical reasoning ability: more facts. Science,222,1029-1031.
Bielinski, J. & Davison, M. L. (1998). Gender differences by item difficultly interaction in multiple-choice mathematics item. American Educational Research Journal, 35(3), 455-476.
Bielinski, J. & Davison, M. L. (2001). A sex difference by by item difficultly interaction in multiple-choice mathematics items administered to national probability samples. Journals of Educational Measurement, 38, 51-77.
Brown & Burton, R. R. (1978). Diagnostic Models for Procedural Bugs in Basic Mathematical Skill. Cognitive Science,2(2), 155-192.
Booth, L. R. (1984). Child-method in Secondary Mathematics. Education Studies in Mathematics, 12, 29-41.
Bourdieu, P. (1986). The forms of capital. In J. G. Richardson (Ed), Handbook of theory and research for the sociology of education, 241-260. Connecticut:greenwood.
Brown & Vanlehu, K.(1980). Repair theory: A Generative Theory of Bugs in Procedural Skills. Cognitive Science, 4.
Camilli, G., & Shepard, L. A. (1994). Meathods for identifying biased test items. Thousand Oaks,CA: Sage.
Clauser, B. E. & Mazor, K. M. (1998). Using statistical procedures to identify differentially functioning test items. Educational Measurement:Issues and Practice,17(1), 31-44.
Davis, R. B. (1984). Learning mathematics: The Cognitive Science Approach to Mathematics Education, Norwood, New Jersey: Ablex Publishing Corporation, 379-426.
Ebel, R. L. & Frisbie, D. A. (1991). Essentials of educational measurement, 5th ed. Englewood Cliffs,NJ:prentice-Hall.
Engelhardt,J.M.(1982). Using Computational Errors in Diagnostic Teaching Arithmetic Teacher, 29(8), 16-19.
Feingold, A.(1994). Gender differences in personality: A meta-analysis. Psychological Bulletin, 116(3), 429-456.
Fennema, E., Carpenter T. P. & Lamon, S. J. (1991). Integrating research on teaching and learning mathematics. State University of New York Press: Albany,N. Y.
Friedman, L (1989). Mathematics and the gender gap: A meta-analysis of recent studies on sex differences in mathematical tasks. Review of Educational Research, 59, 185-213.
Gauge, E. D. (1985). The Cognitive Psychology of School Learning. Boston: Little, Brown and Company.
Goldin, G. A. (1985). Thinking scientifically and thinking mathematically. A Discussion of the paper by Heller and Hungate. Ine E. A. Silver(Ed.). Teaching and learning mathematical problem solving: Multiple research perspectives, 113-122. Lawrence Erlabaum Associates publishers Hillsdale New Jersey.
Gorard, S., Rees, G. & Salisbury, J. (2001). Investigating the patterns of differential attainment of boys and girls at school. British Educational Research Journal, 27, 125-139.
Greene, B. A., Miller, R. B., Crowson, H. M., Duke, B. L., & Akey, K. L. (2004). Predicting high school students’cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology, 29, 462-482.
Hewson, P. W. (1982). A Case Study of Conceptual Change in Special Relativity. The Influence of Prior Knowledge in Learning. European- Journal-of Science-Education.
Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From Words to Questions: Meaning and Representation in Algebra Word Problems. In M.A. Just, & Comprehension, Hillsadale, N.J. : Erlbaum.
Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: a meta-analysis. Psychological Bulletin, 107(2), 139-155.
Jacklin, C. N. (Ed.) (1992). The Psycholohy of gender. New York University Press: New York.
Kyriakides, L., & Antoniou, P., (2009). Gender differences in mathematics achievement: an investigation of gender differences by item difficulty interactions. Educational Research and Evaluation, 15(3), 223-242.
Lester, K.F.(1980).Research on mathematical problem solving. In R. J. Shumway, (Ed.). Research in mathematics educations, 286-318. The National Council of Teachers of Mathematics.
Maccoby, E. E. & Jacklin, C. N. (1974). Psychology of sex differences. Stanford University Press: Palo Alto, CA.
Marshall, S. P. (1983). Schema Knowledge Structures for Representing and Understanding Arithmetic Story Problem. First Year Technical Report, San Diego State University, California, Department of Psychology. (ERIC NO. ED281716) Mayer, R.E.(1985). Educational Psychology: Cognition Approach. NY: Freeman.
Mayer, R. E. (1985). Educational Psychology: Cognition Approach. N.Y.: Freeman.
Merrill, M. D., & Wood, N. D. (1974). Instruction Strategies: A Preliminary Taxonomy. Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics, and Environmental Education, Ohio State University, 1974.
Merrill, Tennyson, & Posey. (1992). Teaching Concept: An Instructional Design Guide. Englewood Cliffs, N. J. : Educational Technology Publications.
Paulsen, K. & Johnson, M.(1983). Sex role attitude and mathematical ability in 4th-, 8th-, and 11th grade students from a high socioeconomic area. Development Psychology, 19, 210-214.
Pines, A. L. (1980). A Model for Program Development and Evaluation: The Formative Role of Summative Evaluation and Research in Science Education. Paper Presented at the Annual Conference of the International Congress for Individualized Industruction (12th, Windsor Canada).
Peterson, P. (1992). Understanding audience segmentation: From elite and mass to omnivore and univorce. Poetics, 21, 243-258.
Philippa, P. & Norma, G. (1984). Do spatial skills contribute to sex differenes in different types of mathematical problems? Journal of Educational Psychology,76, 678-689.
Polya, G. (1957). How to solve it.(2nd ed.). New York: Doubleday.
Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I.(1989). Conceptual Bases of Arithmetic Errors: The Case of Decimal Fractions. Journal for Research in Methematics Education, 20(1), 5-27.
Ryan, K. E., & Fan, M.(1996). Examining gender DIF on a multiple-choice test of mathematics: A confirmatory approach. Educational Measurement: Issues and Practice, 15(4), 15-20.
Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
Silver, E. A.(1981). Thinking About Problem Solving: Toward an Understanding of Metacognitive Aspects of Mathematical Problem Solving. Unpublished Manuscript, San Diego State University, Department of Mathematical Science, San Diego, CA.
Sowder, L. K.(1980). Concept and Principle: Learning in Shumway, R. J. (Ed.), Research in Mathematics Education(NCTM). Instruction: A Model Approach. Boston: Allyn and Bacon.
Sutton, C. & West, L. (1982). Investigating Children Existing Ideas about Science. (ERIC Document Reproduction Service NO. ED230424).
Shuell, T. J. (1986). Cognitive Conceptions of Learning. Review of Educational Research, 4, 411-436.
Weimer, H.(1925). Psychologie der Fehler Leipzig.
Willingham, W. W., & Cole, N. S. (1997). Research on gender differences. In W.W.Willingham & N.S.Cole(Eds.), Gender and fair assessment, 17-54. Hillsdale, NJ: Lawrence Erlbaum Associates.
Willingham, W. W., Cole, N. S., Lewis, C., & Leung, S. W. (1997). Test performance In W.W.Willingham & N.S. Cole(Eds.), Gender and fair assessment, 55-126. Hillsdale, NJ: Lawrence
Erlbaum Associates.
Zhang, L., & Manon, J. (2000). Gender and achievement-understanding gengder differences and similarities in mathematics assessment. Paper presented at the annual meeting of the American Educational Research Association,New Orleans,L. A.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊榮祥(1992)。解釋研究法在科學教育研究上的運用。科學發展月刊,2015,539-547。
2. 黃敏晃(1998)。數學年夜飯。台北:心理出版社。
3. 楊瑞智(1990)。 四則運算類型研究及數學上的應用。國教月刊,36(9,10),18-25。
4. 曹博盛(2005)。TIMSS 2003臺灣國中二年級學生的數學成就及其相關因素之探討。戴於張秋男(主編)。國際數學與科學教育成說趨勢調查,55-94。臺北市:國立臺灣師範大學科學教育中心。
5. 劉貞宜(2000)。數學資優生的解題歷程分析-以建中三位不同能力的數學資優生為例。國立台灣師範大學特殊教育研究所論文,未出版,台北市。
6. 郭正仁(2001)。高雄市國二學生多項式四則運算錯誤類型之研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
7. 梁淑坤(1996)。研究與教學合一--以分析「一元二次方程式」的錯誤為一個例子。嘉義師範學報,10,455-472。
8. 張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,75-200。
9. 邱上真(1992)。國小中年級數學科解題方程導向之評量。特殊教育與後健學報,2,235-273。
10. 張芳全(2008)。數學成就的城鄉差距探討:以TIMSS 為例。國民教育,48(6),22-29。
11. 林碧珍、蔡文發(2005)。TIMSS 2003臺灣國小四年級學生的數學成就及其相關因素之探討。戴於張秋男(主編)(2003)。國際數學與科學教育成說趨勢調查,125-164。臺北市:國立臺灣師範大學科學教育中心。
12. 林福來(1991)。數學的診斷評量。教師天地,54,32-38。
13. 呂溪木(1983)。從國際科展看我國今後科學教育的發展方向。科學教育月刊,64,13-19。
14. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。教育心理學報,27,35-62。
15. 王淑琴、郭重吉(1994)。利用DOE唔談探究大學生電學方面的另有架構。科學教育,5,117-139。