|
第七章 文獻回顧
1.F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
2.A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
3.A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
4.U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
5.H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592.
6.A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
7.C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
8.C.Fong, Cavitation criterion for rubber materials: a review of void-growth models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
9.J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
10.E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
11.T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359.
12.L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
13.C. J. Quigley and D.M. Parks, The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int. J. Fracture, 65(1994)75-96.
14.J.C. Sobotka, R.H., Jr. Dodds and P. Sofronis, Effects of hydrogen on steady, ductile crack growth: Computational studies. Int. J. Solids Struct., 46(2009)4095-4106.
15.M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
16.J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
17.O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I—Analysis. J. Mech. Phys. Solids, 55(2007)1677-1701.
18.O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—Results. J. Mech. Phys. Solids, 55(2007)1702-1728.
19.J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
20.J.G. Ning, H.F. Liu and L. Shang, Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings. Sci. China Ser. G—Phys. Mech. Astron., 51(2008)1745-1760.
21.J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
22.C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
23.C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
24.F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
25.C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
26.S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
27.S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
28.H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
29.X.G. Yuan, Z.Y. Zhu and C.J. Cheng, Study on cavitated bifurcation problems for sphere composed of hyper-elastic materials. J.Engrg. Math., 51 (2005)15-34.
30.O. Lopez-Pamles and M.I. Idiart, An exact result for the macroscopic response of porous neo-Hookean solids. J. Elasticity, 95(2009)99-105.
31. R. Hill, The Mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950. 32. R. Abeyaratne and H.S. Hou, J. Appl. Mech., 56(1989)40.
33. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. Appl. Phys., 52(1981)2812-2825.
34. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350.
35. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
36. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
37. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542.
38. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770.
39. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639.
40. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26.
41. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
42. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
43. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303.
44. X.G. Yuan and H.W. Zhang, Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres. CMES, 40(2009)201-224.
45. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci. Edition, 23(2008)579-583.
46. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives. Mater. Sci.—Medziagotyra, 13(2007)219-223.
47. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176.
48. L. Zheng, et. al., Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civil Eng., ASCE, 20(2008)692-699.
49.張惠文,砂土中減振模型樁之動態性質,國科會計劃(NSC96-2221-E008-059-MY3)。執行期間:九十八年八月至九十九年七月。 50. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336.
51. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145.
52. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure. Earthquake Eng. Struct. Dyn., 31(2002)1777-1792.
53 Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng. Struct., 24(2002)1203-1215.
54. N. Lakshmanan, et. al., Experimental investigations on the seismic response of a base-isolated reinforced concrete frame model. J. Performance Constructed Facilities, ASCE, 22(2008)289-296.
55. T.H. Kim, Y.J. Kim and H.M. Shin, Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings. Struct Eng. Mech., 29(2008)259-278.
56. M. Navarro, et. al., Biomaterials in orthopaedics. J. R. Soc. Interface, 5(2008)1137-1158. 57. Y. Jung, et. al., Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J. Biomaterials Sci.—Polymer Edition, 19(2008)61-74.
58. T. Hu and J.P. Desai, Characterization of soft-tissue material properties: Large deformation analysis. ‘Medical Simulation, Proceedings’ in Lecture Notes in Computer Science, 3078(2004)28-37.
59. J.Z. Wu, et. al., Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Bio-Medical Mater. Eng., 13(2003)373-385.
60. Z.Q. Liu and M.G. Scanlon, Modelling indentation of bread crumb by finite element analysis, Biosystems Eng., 85(2003)477-484.
61. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35 (2000) 201-209.
62. M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26 (1999) 245-252.
63. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202. 64. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38 (2000) 1481-1496.
|