跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹金源
研究生(外文):Jin Yuan Jan
論文名稱:幾丁質分解酵素之轉基因洋桔梗抗真菌之評估
論文名稱(外文):Evaluation on Fungal Diseases Resistance of Transgenic Eustoma grandiflorum Expressing Foreign Chitinase
指導教授:余聰安
指導教授(外文):Tsong-Ann Yu
學位類別:碩士
校院名稱:大葉大學
系所名稱:分子生物科技學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:43
中文關鍵詞:抗真菌蛋白洋桔梗真菌
外文關鍵詞:transgenicfungalinoculation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
洋桔梗(Eustoma grandiflorum),屬於龍膽科(Gentianaceae)一年生或多年生草本花卉,為目前十分流行的觀賞花卉,台灣地區農作物多元而複雜,病蟲害的發生率也相對提高,其中微生物引起的病害中80%以上是經由真菌所引起,一般藉由噴灑大量的農藥或抑菌劑來克服病害,因考慮到農藥對環境的危害及殘留的疑慮,希望能藉由遺傳工程的方式,將抗真菌蛋白基因導入植體內,期望可以達到防治效果。本研究將從木瓜果實所找到幾丁質分解酶(CP-CHI)轉殖到到洋桔梗中,來觀察轉基因洋桔梗表現外來幾丁質分解酶對於洋桔梗真菌病害之抗性。在本研究已成功轉殖出8個轉基因洋桔梗株系,在聚合酶鏈鎖反應分析試驗中,偵測到基因確實存在genomic DNA中。瓶內接種真菌的實驗中發現:在接種Rhizoctonia solani之後,未轉基因的植物四天時會開始呈現萎凋、莖爛並且在8天內會完全罹病死亡,而轉基因的洋桔梗有2個株系抗性較好,在8天時Line 1、Line 3最嚴重的狀態只有葉片萎凋或些微黃化的情況,在接種Sclerotium rolfsii之後,未轉基因的植物葉子四天時會開始呈現褐腐、莖爛並且在5天內會完全罹病死亡,而轉基因的洋桔梗有1個株系抗性較好,在4天時Line 3最嚴重的狀態只有葉片些微褐化的情況,可以證明比非轉基因的植物有抗性,於是再進行Rhizoctonia solani溫室接種,發現在第12天時,非轉基因洋桔梗植株發病死亡時,轉基因的2個植株僅有些微的病徵,尤其以Line 1的抗性為最佳,可存活20天以上。所以針對此2個轉基因植株再進行西方點漬法的分析,發現蛋白質表現量的增加。
Lisianthus (Eustoma grandiflorum) is a cut or ornamental flower that is popular in the world. Fungal diseases often cause serious economic losses in lisianthus. Thus, fungicides are generally used to protect against fungal diseases. In consideration of the harmful and dangerous effects of fungicides to the environmental ecosystem, a transgenic approach is a better and more convenient way to control fungal diseases. Eight transgenic lisianthus lines carrying the chitinase gene (CP-CHI) from Carica papaya L were obtained via Agrobacterium-mediated transformation. The chitinase protein is encoded by the CP-CHI gene under the control of the cauliflower mosaic virus 35S promoter. Transgene was confirmed by genomic PCR. The resistances of independent transgenic lines against the soil-borne fungal pathogen Rhizoctonia solani were evaluated under in vitro and greenhouse conditions. Two lines (Lines 1 and 3 ) exhibited higher resistance against R. solani and expressed higher chitinase level of protein by western blotting. The transgenic line 3 showed resistant to R. solani also presented higher resistance against Sclerotium rolfsii under in vitro conditions.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 vii
目錄 viii
圖目錄 x
符號說明 xi

1.前言
1.1洋桔梗介紹 1
1.2洋桔梗之真菌性病害 2
1.3轉基因抗真菌蛋白之作用機制及研究 5
2.材料與方法
2.1實驗材料 9
2.2實驗方法 10
2.3轉基因植物之瓶內抗病評估及分析 16
2.3.1供試菌株 16
2.3.2真菌之培養 16
2.3.3轉基因洋桔梗之瓶內抗病評估 16
2.3.4接種源之製備 17
2.3.5轉基因植物之溫室抗病評估及分析 17
2.4蛋白質膠體電泳與西方點漬法 17
2.4.1蛋白質膠體電泳 18
2.4.2西方點漬法(Westhern blot) 18
3.結果
3.1洋桔梗基因轉殖 20
3.2轉基因洋桔梗株系之PCR分析 20
3.3轉基因洋桔梗株系之瓶內真菌接種 21
3.3.1轉基因洋桔梗株系之瓶內R. solani接種 22
3.3.2轉基因洋桔梗株系之瓶內S. rolfsii接種 22
3.4轉基因洋桔梗株系之溫室真菌接種 23
3.5轉基因洋桔梗株系之西方點漬法分析 24
4.結論 25
參考文獻 37
附錄 42
1.行政院農委會。2007。農業統計年報。
2.余聰安。2001。木瓜微體繁殖與營養器官基因轉殖。國立中興大學植物學系博士論文。
3.李豐在。1985。花蓮區農業專訊 54: 14-15。
4.李叡明。1984。以花農立場探討本省花卉生產問題(以67年銷日洋桔梗產銷經過為例)。台灣省農業試驗所特刊 14: 29-36。
5.黃怡萍。2004。木瓜幾丁質酶之選殖與分析。私立東海大學食品科學研究所食品科技組碩士論文。
6.陳任芳。1996。花蓮區農業專訊 55: 15-16。
7.陳玉婷。1993。木瓜熟變相關基因之研究。國防醫學院生命科學研究所博士論文。
8.陳福褀。1993。 洋桔梗 園藝之友 39: 32-35。
9.曾國欽。2004。植物重要防疫檢疫病害診斷鑑定技術研習會專刊(三) 23-34。
10.楊秀珠。1991。洋桔梗病害及防治。農業世界雜誌 190: 32-40。
11.蘇宗振。1999。植物基因轉殖之研究。科學農業47 ( 3, 4 ) : 112-119 。
12.大川 清。2003。花專科*育種と栽培-トルコギキョウ。p 20-38。誠文堂新光社。
13.Anand, A., Zhou T., Trick H N., Gill G S., Bockus W.W. and Muthukrishnan S. 2002. Greenhouse and field testing of transgenic wheat plants stably
expressing genes for thaumatin-like protein,chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany. 54: 1101-1111.
14.Bieri, S., Potrykus, I. and Futterer, J. 2000. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theoretical and Applied Genetics. 100: 755-763.
15.Bliffeld, M., Mundy J., Potrykus I. and Futterer J. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics. 98: 1079-1086.
16.Bull, J., Mauch, F., Hertig, C., Regmann, G. and Dudler, R. 1992. Sequence and expression of a wheat gene that encodes a novel protein associated with pathogen defense. Molecular Plant-Microbe Interactions. 5: 516–519.
17.Chen, Y.T., Hsu, L.H ., Huang, I.P ., Tsai, T.C ., Lee, G.C . and Shaw, J.U. 2007. Gene Cloning and Characterization of a Novel Recombinant Antifungal Chitinase from Papaya (Carica papaya) . Journal of Agricultural and Food Chemistry. 55: 714-722.
18.Dana, M., Pintor-Toro, J.A. and Cubero, B. 2006. Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. Plant Physiology. 142: 722–730.
19.Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends in Plant Science. 2: 266-274.
20.Gamborg, O.L., Miller, R. A. and Ojima, K. 1968. Nutrient Requirements of suspension cultures of soybean root cells. Experimental Cell Research. 50 : 151-158.
21.Grenier, J.,Potvin,C. and Asselin, A. 1993. Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiol. 103: 1277-1283.
22.Jansen, C., Wettstein., D.V., Scha¨ fer, W., Kogel, K.H., Felk, A.and Frank, J.M.2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum .Plant Physiology 88: 936-942.
23.Jayaraj, J. and Punja, Z. K.2007. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens . Plant Cell Reports. 26: 1539-1546.
24.Kitajima, S. and Sato, F. 1999. Plant Pathogenesis-Related Proteins: Molecular Mechanisms of Gene Expression and Protein Function. Japanese Biochemical Society. 125: 1-8.
25.Kirubakaran, S.I. and Sakthivel N. 2006. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expression and Purification. 52: 159-166.
26.Klement, Z. 1982. Hypersensitivity. In phytopathogenic prokaryotes, Volume 2 (Mount MS and Lacy GH) New York: Academic Press. 149-177.
27.Lee, SC., Hwang, IS., Choi, HW. and Hwang, BK. 2008. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance. Plant Physiology. 148: 1004–1020.
28.Lorito M, Woo SL, Garcia I, et al. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of the United States of America. 95: 7860–7865.
29.Lipke, P. and Ovalle, R. 1998. Yeast cell walls: new structures, new challenges. The Journal of Bacteriology. 180: 3735–3740.
30.Mackintosh, C.A., Shin, S., Lewis, j., Heinen, S.J., Radmer, L., Dill-Macky, R., Baldridge, G.D., Zeyen, R.J. and Muehlbauer G.J. 2008 Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. Journal of Experimental Botany. 59: 2371–2378.
31.Mackintosh, C.A., Lewis, j., Radmer, L.E., Shin, S., Smith ,L.A., Heinen, S.J., Wyckoff, M.N., Dill-Macky, R., Evans, C.K., Kravchenko, S., Baldridge, G.D., Zeyen, R.J. and Muehlbauer G.J. 2007. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Reports. 26:479–488.
32.Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol 88(3):936-942.
33.Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467-47.
34.Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
35.Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 8(19):4321-4326.
36.Nawrath, C. and Metraux, J. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393-1404.
37.Oldach, KH., Becker D. and Lorz H. 2001. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant Microbe Interactions 14: 832-838.
38.Ryals, J., Uknes, S. and Ward, E. 1994. Systemic acquired resistance. Plant Physiol 104: 1109-1112.
39.Salzman, R. A., Tikhonova, I., Bordelon, B. P. P., Hasegawa, M. and Bressan, R. A. 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes adevelopmentally controlled defense response during fruit ripening in grape. Plant Physiol. 117: 465–472.
40.Schenk, R. U. and A. C. Hildebrandt, 1972, Medium and Techniques for Induction and Growth of Monocotyledonous and Dicotyledonous Plant Cell Cultures. Canadian Journal of Botany. 50 : 199-204.
41.Schweizer, P., Christoffel, A., Dudler R. 1999. Transient expression of members of the germin-like gene in epidermal cells of wheat confers disease resistance. The Plant Journal 20: 541-552.
42.Segura, A., Moreno, M., Molina, A. and Garcia-Olmedo, F. 1998. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 435: 159–162.
43.Selitrennikoff, C.P. 2001. Antifungal protein. Applied and Environmental MicroBiology. p: 2883-2894.
44.Singh, A., Kirubakaran S.I, Sakthivel N, Heterologous expression of new antifungal chitinase from wheat . Protein expression and purification. 56 :100–109.
45.Thevissen, K., Ghazi, A., Samblanx, D. G. W., Brownlee, C.,Osborn,R.W. and Broekaert,W. F. 1996. Fungal membrane responses Induced by plant defensins and thionins. The Journal of Biological Chemistry. 271: 5018-15025.
46.Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert, W. F. 1997. Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. The Journal of Biological Chemistry. 272: 32176-32181.
47.Thevissen, K.,Terras, F. T.and Broekaert,W. F. 1999.Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Applied and Environmental Microbiology. 65: 5451-5458.
48.Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert,W. F.2000. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Molecular Plant-Microbe Interactions. 13: 54-61.
49.VAN Loon, L. C. and VAN Kammen, A. (I970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. 'Samsun' and 'Samsun NN' II.Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199-211.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top