1.行政院農委會。2007。農業統計年報。
2.余聰安。2001。木瓜微體繁殖與營養器官基因轉殖。國立中興大學植物學系博士論文。3.李豐在。1985。花蓮區農業專訊 54: 14-15。
4.李叡明。1984。以花農立場探討本省花卉生產問題(以67年銷日洋桔梗產銷經過為例)。台灣省農業試驗所特刊 14: 29-36。
5.黃怡萍。2004。木瓜幾丁質酶之選殖與分析。私立東海大學食品科學研究所食品科技組碩士論文。6.陳任芳。1996。花蓮區農業專訊 55: 15-16。
7.陳玉婷。1993。木瓜熟變相關基因之研究。國防醫學院生命科學研究所博士論文。8.陳福褀。1993。 洋桔梗 園藝之友 39: 32-35。
9.曾國欽。2004。植物重要防疫檢疫病害診斷鑑定技術研習會專刊(三) 23-34。
10.楊秀珠。1991。洋桔梗病害及防治。農業世界雜誌 190: 32-40。11.蘇宗振。1999。植物基因轉殖之研究。科學農業47 ( 3, 4 ) : 112-119 。12.大川 清。2003。花專科*育種と栽培-トルコギキョウ。p 20-38。誠文堂新光社。
13.Anand, A., Zhou T., Trick H N., Gill G S., Bockus W.W. and Muthukrishnan S. 2002. Greenhouse and field testing of transgenic wheat plants stably
expressing genes for thaumatin-like protein,chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany. 54: 1101-1111.
14.Bieri, S., Potrykus, I. and Futterer, J. 2000. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theoretical and Applied Genetics. 100: 755-763.
15.Bliffeld, M., Mundy J., Potrykus I. and Futterer J. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics. 98: 1079-1086.
16.Bull, J., Mauch, F., Hertig, C., Regmann, G. and Dudler, R. 1992. Sequence and expression of a wheat gene that encodes a novel protein associated with pathogen defense. Molecular Plant-Microbe Interactions. 5: 516–519.
17.Chen, Y.T., Hsu, L.H ., Huang, I.P ., Tsai, T.C ., Lee, G.C . and Shaw, J.U. 2007. Gene Cloning and Characterization of a Novel Recombinant Antifungal Chitinase from Papaya (Carica papaya) . Journal of Agricultural and Food Chemistry. 55: 714-722.
18.Dana, M., Pintor-Toro, J.A. and Cubero, B. 2006. Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. Plant Physiology. 142: 722–730.
19.Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends in Plant Science. 2: 266-274.
20.Gamborg, O.L., Miller, R. A. and Ojima, K. 1968. Nutrient Requirements of suspension cultures of soybean root cells. Experimental Cell Research. 50 : 151-158.
21.Grenier, J.,Potvin,C. and Asselin, A. 1993. Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiol. 103: 1277-1283.
22.Jansen, C., Wettstein., D.V., Scha¨ fer, W., Kogel, K.H., Felk, A.and Frank, J.M.2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum .Plant Physiology 88: 936-942.
23.Jayaraj, J. and Punja, Z. K.2007. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens . Plant Cell Reports. 26: 1539-1546.
24.Kitajima, S. and Sato, F. 1999. Plant Pathogenesis-Related Proteins: Molecular Mechanisms of Gene Expression and Protein Function. Japanese Biochemical Society. 125: 1-8.
25.Kirubakaran, S.I. and Sakthivel N. 2006. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expression and Purification. 52: 159-166.
26.Klement, Z. 1982. Hypersensitivity. In phytopathogenic prokaryotes, Volume 2 (Mount MS and Lacy GH) New York: Academic Press. 149-177.
27.Lee, SC., Hwang, IS., Choi, HW. and Hwang, BK. 2008. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance. Plant Physiology. 148: 1004–1020.
28.Lorito M, Woo SL, Garcia I, et al. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of the United States of America. 95: 7860–7865.
29.Lipke, P. and Ovalle, R. 1998. Yeast cell walls: new structures, new challenges. The Journal of Bacteriology. 180: 3735–3740.
30.Mackintosh, C.A., Shin, S., Lewis, j., Heinen, S.J., Radmer, L., Dill-Macky, R., Baldridge, G.D., Zeyen, R.J. and Muehlbauer G.J. 2008 Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. Journal of Experimental Botany. 59: 2371–2378.
31.Mackintosh, C.A., Lewis, j., Radmer, L.E., Shin, S., Smith ,L.A., Heinen, S.J., Wyckoff, M.N., Dill-Macky, R., Evans, C.K., Kravchenko, S., Baldridge, G.D., Zeyen, R.J. and Muehlbauer G.J. 2007. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Reports. 26:479–488.
32.Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol 88(3):936-942.
33.Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467-47.
34.Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
35.Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 8(19):4321-4326.
36.Nawrath, C. and Metraux, J. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393-1404.
37.Oldach, KH., Becker D. and Lorz H. 2001. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant Microbe Interactions 14: 832-838.
38.Ryals, J., Uknes, S. and Ward, E. 1994. Systemic acquired resistance. Plant Physiol 104: 1109-1112.
39.Salzman, R. A., Tikhonova, I., Bordelon, B. P. P., Hasegawa, M. and Bressan, R. A. 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes adevelopmentally controlled defense response during fruit ripening in grape. Plant Physiol. 117: 465–472.
40.Schenk, R. U. and A. C. Hildebrandt, 1972, Medium and Techniques for Induction and Growth of Monocotyledonous and Dicotyledonous Plant Cell Cultures. Canadian Journal of Botany. 50 : 199-204.
41.Schweizer, P., Christoffel, A., Dudler R. 1999. Transient expression of members of the germin-like gene in epidermal cells of wheat confers disease resistance. The Plant Journal 20: 541-552.
42.Segura, A., Moreno, M., Molina, A. and Garcia-Olmedo, F. 1998. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 435: 159–162.
43.Selitrennikoff, C.P. 2001. Antifungal protein. Applied and Environmental MicroBiology. p: 2883-2894.
44.Singh, A., Kirubakaran S.I, Sakthivel N, Heterologous expression of new antifungal chitinase from wheat . Protein expression and purification. 56 :100–109.
45.Thevissen, K., Ghazi, A., Samblanx, D. G. W., Brownlee, C.,Osborn,R.W. and Broekaert,W. F. 1996. Fungal membrane responses Induced by plant defensins and thionins. The Journal of Biological Chemistry. 271: 5018-15025.
46.Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert, W. F. 1997. Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. The Journal of Biological Chemistry. 272: 32176-32181.
47.Thevissen, K.,Terras, F. T.and Broekaert,W. F. 1999.Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Applied and Environmental Microbiology. 65: 5451-5458.
48.Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert,W. F.2000. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Molecular Plant-Microbe Interactions. 13: 54-61.
49.VAN Loon, L. C. and VAN Kammen, A. (I970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. 'Samsun' and 'Samsun NN' II.Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199-211.