|
[1] H. S. Lee and D. A. Houges and P. R. Gray, ``Self-Calibration Technique for A/D Converters,'' IEEE Trans. Circuits and Systems, vol. 30, no. 3, pp. 188--190, Mar. 1983. [2] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman, ``All-Digital Background Calibration of a Successive Approximation ADC Using the "Split ADC" Architecture,'' IEEE Trans. Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2355--2365, Oct. 2011. [3] T. Y. Hsieh, ``A digital calibration scheme for the successive approximation analog-to-digital converter,'' Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Mar. 2009. [4] J. C. Chang, ``A mixed-signal calibration scheme for the fully differential successive approximation analog-to-digital converter,'' Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Jan. 2011. [5] W. Liu, P. Huang, and Y. Chiu, `` A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC Achieving Over 90dB SFDR,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2010, pp. 380--381. [6] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, ``A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731--740, Apr. 2010. [7] Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, ``A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111--1120, Jun. 2010. [8] J. Yang, T. L. Naing, and B. Brodersen, ``A 1-GS/s 6-bit 6.7-mW ADC in 65-nm CMOS,'' in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Oct. 2009, pp. 287--290. [9] J. Yang, T. L. Naing, and B. Brodersen, ``A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1469--1478, Aug. 2010. [10] H. C. Hong, ``Frontend analog circuit design in vehicular communication system,'' National Science Council Project (NSC-98-2220-E-009-036), Jul. 2009. [11] B. P. Ginsburg and A. P. Chandrakasan, ``A 500 MS/s 5 b ADC in 65-nm CMOS,'' in IEEE Symp. VLSI Circuits, Jun. 2007, pp. 174--175. [12] Y. K. Chang, C. S. Wang, and C. K. Wang, ``A 8-bit 500KS/s low power SAR ADC for bio-medical application,'' in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2007, pp. 228--231. [13] S. W. M. Chen and R. W. Brodersen, ``A 6-bit 600-MS/ s 5.3-mW Asynchronous ADC in 0.13-um CMOS,'' IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669--2680, Dec. 2006. [14] F. Kuttner, ``A 1.2V 10b 20MS/s Non-Binary Successive Approximation ADC in 0.13um CMOS,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2002. [15] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, and N. Takai, ``SAR ADC Algorithm with Redundancy,'' in Proc. IEEE Asia Pacific Conference on Cicuits and Systems (APCCAS), Dec. 2008, pp. 268--271. [16] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, `` A 10b 50MS/s 820uW SAR ADC with On-Chip Digital Calibration,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2010, pp. 384--385. [17] M. Yoshioka, K. Ishikawa, T. Takayama and S. Tsukamoto, ``A 10-b 50-MS/s 820-uW SAR ADC With On-Chip Digital Calibration,'' IEEE Trans. on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 410-- 416, Dec. 2010. [18] G. M. Lee and H. C. Hong, ``A 65-fJ/Conversion-Step 0.9-V 200-kS/ s Rail-to-Rail 8-bit Successive Approximation ADC,'' IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2161--2168, Oct. 2007. [19] R. J. Guo, ``Design of a 12-bit, ultra-low power successive approximation analog-to-digital converter,''Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Jan. 2008. [20] K. M. Lei and H. C. Hong, ``A 12-bit 25MS/s Asynchronous SAR ADC,'' in The 22th VLSI Design/CAD Symposium, Aug. 2011. [21] J. Steensgaard, ``Bootstrapped low-voltage switches,'' in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 1999, pp. 29--32. [22] B. S. Song, M. J. Choe, P. Rakers, and S. Gillig, ``A 1 V 6 b 50 MHz current-interpolating CMOS ADC,'' in IEEE Symp. VLSI Circuits, Jun. 1999, pp. 79--80. [23] C. C. Lee and M. P. Flynn, ``A SAR-Assisted Two-Stage Pipeline ADC,'' IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859--869, Apr. 2011. [24] N. H. E. Weste and K. Eshragian, Principles of CMOS design. Boston, Massachusetts: Addison Wesley, 1993.
|