跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李健文
研究生(外文):Lei, Kin-Man
論文名稱:十二位元每秒兩千五百萬次取樣非同步連續近似類比數位轉換器及其全數位校正機制
論文名稱(外文):A 12-bit 25MS/s Asynchronous SAR ADC With All Digital Background Calibration
指導教授:洪浩喬
指導教授(外文):Hong, Hao-Chiao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:連續近似類比數位轉換器背景校正
外文關鍵詞:SAR ADCBackground Calibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:824
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:0
連續近似類比數位轉換器(SAR ADC)的解析度主要受限於因製程變異而造成的匹配誤差。以往已經有人提出前景和背景校正[1][2][3][4][5]來提昇SAR ADC的解析度,但兩者都有各自存在的缺點。前景校正利用電荷守恆的原理,電路實現上比較簡單,但電容誤差會因環境參數的變異而導致校正失敗;背景校正可以克服環境參數的變異但是要用電路實現複雜的數學公式,會讓整個SAR ADC在速度和耗能表現上大打折扣。
本篇論文提出的校正方法,集合前景和背景校正的優點,在提昇SAR ADC的解析度的同時,減少對速度和耗能表現上的影響。另外,我們選用適合的電容切換方法使比較器的設計簡單化以提升其性能。
後佈局模擬結果顯示,當DAC上每個電容存在隨機誤差時,SAR ADC在校正前的
SNDR為47.4dB,校正後SNDR提昇到63.9dB。量測結果顯示SAR ADC在其最高取樣頻率10MS/s下,校正前的SNDR為47.1dB,校正後SNDR提昇到51.8dB。
The resolution of a SAR ADC is mainly limited by the accuracy of capacitor ratios. Foreground and background calibration schemes [1][2][3][4][5] have been proposed to calibrate the capacitor weight errors. However, both kinds of calibration schemes may suffer from power and speed penalties. The foreground calibration schemes using charge redistribution have the advantage of simple implementation but the continuous variations of environmental parameters may cause it failed. The background calibration schemes can address the variation problems but its hardware is very complicated due to the implementation of complex mathematical equations.
This thesis proposes a calibration scheme that keeps the advantages of the foreground and background calibration schemes and improve the performance of the SAR ADC in power and speed. We also adopted a suitable bit-cycling scheme to simplify the comparator design and thus to enhance its performance.
Post-layout simulation results show that the calibrated SAR ADC achieves a SNDR improvement from 47.4dB to 63.9dB at a sampling rate of 25MS/ s when random mismatch is added on each capacitor in DAC. Measurement results shows the SAR ADC achieves a SNDR improvment from
47.1dB to 51.8dB at its highest sampling rate of 10MS/s.
1 Introduction 1
1.1 The Basic of SAR ADC 2
1.2 Fully Differential SAR ADC: Conventional 3
1.3 Fully Differential SAR ADC: Set and Down 5
1.4 Fully Differential SAR ADC: Vcm-based switching algorithm 6
1.5 Methodology 7
2 High Resolution SAR ADCs 8
2.1 Synchronous and Asynchronous conversion in SAR ADC 8
2.2 Redundancy 10
2.3 Self-Calibration of Capacitor Mismatch (Mixed-moded) 13
2.4 Self-Calibration of Capacitor Mismatch (Digital) 17
2.5 Self-Calibration of Capacitor Mismatch (Differential Mixed-signal) 22
2.6 SAR ADC with digital background calibration 25
2.7 Split SAR ADC with digital background calibration 26
2.8 Summary 30
3 Proposed Calibration Scheme for SAR ADC 31
3.1 Proposed SAR ADC Architecture 31
3.2 Switching Algorithm in Normal Converion 32
3.3 Capacitor Mismatch in SAR ADC - Attenuation Capacitor 34
3.4 Capacitor Mismatch in SAR ADC - Main DAC 37
3.4.1 Estimation of MSB-1 Capacitors 38
3.4.2 Estimation of MSB-2 Capacitors 42
3.5 Calibrating the mismatch effect 46
3.6 Offset consideration 46
3.7 Proposed background calibration and flow chart 47
3.8 Behaviour simulations 50
3.8.1 Random capacitor mismatch 50
3.8.2 Positive capacitor mismatch 51
3.8.3 Negative capacitor mismatch 52
3.9 Comparison with previous works 54
4 Circuit Design 55
4.1 Bootstrapped Switch 55
4.2 Comparator 58
4.3 DAC and switches 62
4.4 Asynchronous Control Circuit (ACC) 66
4.5 SAR and calibration circuit 68
4.6 Layout, power consumption, hardware overhead and speed 69
4.7 Simulation Results 72
5 Measurement results 74
5.1 Measurement setup 74
5.2 Measurement results in Normal Mode 76
5.3 Measurement results in Calibration Mode 78
5.3.1 Attenuation capacitor 79
5.3.2 Main DAC 81
5.4 Failure Analysis 82
5.4.1 Speed 82
5.4.2 Resolution 84
5.4.3 Bonding wire 88
5.5 Benchmark 90
6 Conclusion and Future Works 91
6.1 Conclusion 91
6.2 Future Works 91
References 93
[1] H. S. Lee and D. A. Houges and P. R. Gray, ``Self-Calibration Technique for A/D Converters,'' IEEE Trans. Circuits and Systems, vol. 30, no. 3, pp. 188--190, Mar. 1983.
[2] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman, ``All-Digital Background Calibration of a Successive Approximation ADC Using the "Split ADC" Architecture,'' IEEE Trans.
Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2355--2365, Oct. 2011.
[3] T. Y. Hsieh, ``A digital calibration scheme for the successive approximation analog-to-digital converter,''
Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Mar. 2009.
[4] J. C. Chang, ``A mixed-signal calibration scheme for the fully differential successive approximation analog-to-digital converter,'' Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Jan. 2011.
[5] W. Liu, P. Huang, and Y. Chiu, `` A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC Achieving Over 90dB SFDR,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2010, pp. 380--381.
[6] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, ``A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731--740, Apr. 2010.
[7] Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, ``A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111--1120, Jun. 2010.
[8] J. Yang, T. L. Naing, and B. Brodersen, ``A 1-GS/s 6-bit 6.7-mW ADC in 65-nm CMOS,'' in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Oct. 2009, pp. 287--290.
[9] J. Yang, T. L. Naing, and B. Brodersen, ``A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing,'' IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1469--1478, Aug. 2010.
[10] H. C. Hong, ``Frontend analog circuit design in vehicular communication system,'' National Science Council Project (NSC-98-2220-E-009-036), Jul. 2009.
[11] B. P. Ginsburg and A. P. Chandrakasan, ``A 500 MS/s 5 b ADC in 65-nm CMOS,'' in IEEE Symp. VLSI Circuits, Jun. 2007, pp. 174--175.
[12] Y. K. Chang, C. S. Wang, and C. K. Wang, ``A 8-bit 500KS/s low power SAR ADC for bio-medical application,'' in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2007, pp. 228--231.
[13] S. W. M. Chen and R. W. Brodersen, ``A 6-bit 600-MS/ s 5.3-mW Asynchronous ADC in 0.13-um CMOS,'' IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669--2680, Dec. 2006.
[14] F. Kuttner, ``A 1.2V 10b 20MS/s Non-Binary Successive Approximation ADC in 0.13um CMOS,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2002.
[15] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, and N. Takai, ``SAR ADC Algorithm with Redundancy,'' in Proc. IEEE Asia Pacific Conference on Cicuits and Systems (APCCAS), Dec. 2008, pp.
268--271.
[16] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, `` A 10b 50MS/s 820uW SAR ADC with On-Chip Digital Calibration,'' in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2010, pp. 384--385.
[17] M. Yoshioka, K. Ishikawa, T. Takayama and S. Tsukamoto, ``A 10-b 50-MS/s 820-uW SAR ADC With On-Chip Digital Calibration,'' IEEE Trans. on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 410--
416, Dec. 2010.
[18] G. M. Lee and H. C. Hong, ``A 65-fJ/Conversion-Step 0.9-V 200-kS/ s Rail-to-Rail 8-bit Successive Approximation ADC,'' IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2161--2168, Oct. 2007.
[19] R. J. Guo, ``Design of a 12-bit, ultra-low power successive approximation analog-to-digital converter,''Master's thesis, National Chiao Tung University, Department of Electrical and Control Engineering, Jan. 2008.
[20] K. M. Lei and H. C. Hong, ``A 12-bit 25MS/s Asynchronous SAR ADC,'' in The 22th VLSI Design/CAD Symposium, Aug. 2011.
[21] J. Steensgaard, ``Bootstrapped low-voltage switches,'' in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 1999, pp. 29--32.
[22] B. S. Song, M. J. Choe, P. Rakers, and S. Gillig, ``A 1 V 6 b 50 MHz current-interpolating CMOS ADC,'' in IEEE Symp. VLSI Circuits, Jun. 1999, pp. 79--80.
[23] C. C. Lee and M. P. Flynn, ``A SAR-Assisted Two-Stage Pipeline ADC,'' IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859--869, Apr. 2011.
[24] N. H. E. Weste and K. Eshragian, Principles of CMOS design. Boston, Massachusetts: Addison Wesley, 1993.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 一個十二位元每秒兩千五百萬次取樣具非同步時脈產生器與全數位校正機制之連續近似類比至數位轉換器之實現
2. 一種應用於全差動連續近似式類比數位轉換器之混合訊號式校正方法
3. 一個具備數位背景式校正機制之十三位元每秒一億次取樣0.18-um CMOS導管式類比數位轉換器的設計
4. 一個帶有冗餘位元每次轉換兩位元的逐漸逼近式類比數位轉換器設計
5. 可應用於無線通訊系統的十一位元低功耗連續近似類比數位轉換器使用校正與每周期比較兩位元技術
6. 實現一個基於多關聯性的背景式數位校正之 十三位元每秒一億次取樣管線式類比數位轉換器
7. 適用於三角積分式類比數位轉換器之全整合型內建自我測試電路設計
8. 一個使用前景式校正14位元每秒1億次取樣之電流導向式數位類比轉換器
9. 一種應用於連續近似式類比數位轉換器之數位校正方法
10. 一個快速鎖定460.1MHz至6.177GHz之全數位式鎖相迴路的設計
11. 具前景式自我校正功能之十四位元每秒兩億次取樣電流導向式數位類比轉換器設計
12. 一個低功率快速鎖定1.20GHz至6.95GHz全數位式鎖相迴路之實現
13. 使用週期性重置積分之低成本角度解調變晶片設計
14. 一種改善多顆粒MLC NAND快閃記憶體寫入速度的方法
15. 一個具備數位背景校正技術使用開迴路式殘值放大器之導管式類比數位轉換器