跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳怡瑾
研究生(外文):I Chin Wu
論文名稱:動作發展遲緩兒童的身體質量指數/重高指數分類分佈及其與飲食/活動型態之相關
論文名稱(外文):The Distribution of Body Mass Index/Weight-for-Length Index Classification andIts Relationships with Diet /Activity Patterns in Children with Motor Delay
指導教授:黃靄雯黃靄雯引用關係
指導教授(外文):A. W. Hwang
學位類別:碩士
校院名稱:長庚大學
系所名稱:早期療育研究所
學門:醫藥衛生學門
學類:護理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:152
中文關鍵詞:動作發展遲緩體位身體質量指數重高指數能量攝取活動型態
外文關鍵詞:motor delayanthropometry statusbody mass indexweight-for- length indexenergy intakeactivity patterns
相關次數:
  • 被引用被引用:2
  • 點閱點閱:528
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:4
研究背景與目的:根據文獻資料發現動作發展遲緩兒童可能因活動障礙導致有過重或肥胖的現象,也可能因飲食問題導致過瘦情形,其體位分佈呈現兩極化現象。然而,相較於學齡兒童,學齡前的動作發展遲緩兒童之體位分佈變化與飲食及活動型態與體位的相關研究相對較缺乏。因此,本研究目的為探討解台灣0-6歲動作發展遲緩兒童體位分佈、體位與飲食及活動型態之相關。
研究方法:本研究共收集106位9-73個月大之動作發展遲緩兒童,採橫斷式與回溯性之調查研究。體位測量方法分為二種,身體質量指數(Body Mass Index,簡稱BMI)及重高指數(Weight-for-Length Index,簡稱WLI)。兒童一日總熱量攝取採用前24小時回憶法記錄;活動型態採用嬰幼兒活動作息調查表來統計各項活動型態之維持時間。以卡方檢定分析各年齡分層動作發展遲緩兒童之體位分佈與一般發展兒童之差異。利用斯皮爾曼相關係數(Spearman’s Rank Correlation Coefficient)及皮爾森相關係數(Pearson’s Correlation Coefficient)來分析兒童體位、一日總熱量攝取及活動型態間之相關性。而其多重影響體位因子則利用邏輯式迴歸分析以預測兒童過重或肥胖。
結果:以BMI與WLI二種方法來判定體位,其體位分佈具顯著差異(χ2=54.9,p<.001)。而以WLI分類判定標準,動作發展遲緩兒童體位分佈呈現出兩極化的現象更加明顯。而兩種體位方法之判定0-3歲動作發展遲緩兒童屬於正常範圍體位較一般發展兒童少(χ2=10.2~41.9,p<.01)。能量攝取越高,其皮下脂肪厚度值(Spearman's Rho, rs=0.39,p<.01;Pearson's, r=0.43,p<.01)越高,其BMI(Spearman's Rho, rs=0.24,p<.01;Pearson's, r=0.25,p<.01)或WLI(Spearman's Rho, rs=0.26,p<.01;Pearson's, r=0.26,p<.01)之分類則會較傾向於肥胖。主動活動維持時間越長,其BMI(Spearman's Rho, rs=0.19,p<.05;Pearson's, r=0.23,p<.05)或WLI(Spearman's Rho, rs=0.29,p<.01;Pearson's, r=0.32,p<.01)分類較傾向於肥胖。以邏輯式迴歸分析顯示,若以BMI為判定過重或肥胖的基準,動作發展遲緩兒童之攝取熱量越高(OR=1.003,p=.04)、服用抗癲癇藥物(OR=12.465,p=.02)與低社經地位(OR=4.807,p=.05其過重或肥胖之機率顯著較高;以WLI為基準,一日總熱量攝取越高(OR=1.006,p=.03)亦可預測過重或肥胖。
結論:動作發展遲緩兒童之體位分佈會因使用BMI或WLI二種方式而有所不同。然而,目前並無適合的生長常模可應用在動作發展遲緩兒童。年齡分層下,0-3歲動作發展遲緩兒童的正常體位比例皆明顯低於一般發展兒童。而飲食攝取、不同活動型態與體位三者之間有其相關性。此外,多重因子可預測針動作發展遲緩兒童之過重及肥胖。因此,在未來發展有待於長期追蹤研究來探討其因果關係。
Background and purpose: Previous studies have shown that children with motor delay would have higher possibility of being overweight or obesity due to their activities limitation, or being thinness because of the diet problem. The anthropometry status distribution for children with motor delay tended to be bimodal. However, comparing with normal children, the studies pertaining to the anthropometry status, energy intake and activity pattern is still lacking in preschool children with motor delay. Therefore, the purposes of this study were to investigate the anthropometry status distribution among in Taiwanese children with motor delay aged 0-6 years, and its relevance to diet, and activity patterns.
Methods: The study design was cross-sectional and retrospective study. A total of 106 children with motor delay aged 9 to 73 months were recruited. The anthropometry status was classified by two methods: Body Mass Index and Weight-for-Length Index (WLI). The children’s total daily energy intake was recorded by 24-hour dietary recall, and the time spent on every activity patterns was measured with Daily Routine and Activity Questionnaires for Young Children (DRAQ). The difference of anthropometry status distribution between children with motor delay and normal children was tested by chi-square statistics. The relationships among children’s anthropometry status, total daily energy intake and time spent in diverse activity patterns were tested by Spearman’s rank correlation coefficient and Pearson’s correlation coefficient. Logistic regression was used to analyze the multiple factors predicting overweight or obesity in children with motor delay.

Result: The anthropometry status classified by BMI were statistically significantly differed from that classified by WLI (χ2=54.9, p<.001) in children with motor delay. At the ages between 0-3 years, the proportion of children classified as normal anthropometry status was less in children with motor delay than in typically developed children (χ2=10.2~41.9, p<.01)by either methods of BMI or WLI. Furthermore, a bimodal distribution of anthropometry was more evident when WLI was used for anthropometry status classification. For the relationships among anthropometry status, energy intake and time spent on activity patterns, higher daily energy intake was correlated with skin-fold thickness (Spearman's Rho, rs=0.39, p<.01;Pearson's, r=0.43, p<.01) and higher tendency of obesity (BMI: Spearman's Rho, rs=0.24, p<.01;Pearson's, r=0.25, p<.01) (WLI: Spearman's Rho, rs=0.26, p<.01;Pearson's, r=0.26, p<.01). The tendency of obesity was also related to more time spent on active activity (BMI: Spearman's Rho, rs=0.19, p<.05;Pearson's, r=0.23, p<.05) (WLI: Spearman's Rho, rs=0.29,p<.01;Pearson's, r=0.32,p<.01). Multiple factors, such as higher daily energy intake (OR=1.003, p=.04), used of anti-epileptics medication (OR=12.465, p=.02), low socioeconomic status (OR=4.807, p=.05), and more time spent on floor activity (OR=1.006, p=.03) could predicting obesity or overweight.
Conclusions: Anthropometry status distribution in children with motor delay would depend on the method of either BMI or WLI. However, there was no suitable growth norm to be applied in children with motor delay. In children aged 0-3, the percentage of normal anthropometry status in children with motor delay was much lower than the normal children. There were inter-relationships among anthropometry status, total daily energy intake, and time spent on various patterns of activities. Besides, overweight or obesity could be predicted by multiple factors. The case-effect relationships between the multiple predicting factors and anthropometry status need to be verified by longitudinal studies in the future.
指導教授推薦書
口試委員會審定書
授權書 iii
謝辭 v
中文摘要 vi
英文摘要 viii
目次 xi
圖表目次 xiii
第一章、 緒論 1
第一節、 研究背景與動機 1
第二節、 研究目的 5
第三節、 研究假說 6
第四節、 名詞解釋 7
第二章、 文獻探討 9
第一節、 兒童體位之測量方法 9
第二節、 動作發展遲緩兒童之體位分類分佈及盛行率 18
第三節、 兒童能量攝取與兒童體位分類的關係 21
第四節、 兒童活動型態與體位分類的關係 23
第五節、 多因子預測體位之相關研究 25
第三章、 研究方法 26
第一節、 研究對象 26
第二節、 研究設計 27
第三節、 研究工具 28
第四節、 研究流程 34
第五節、 統計分析 38
第四章、 結果 40
第一節、 個案基本資料 40
第二節、 體位比例分佈 42
第三節、 動作發展遲緩兒童的BMI/WLI分類及皮下脂肪厚度與能量攝取、及活動型態之相關 48
第四節、 0-3歲與3-6歲動作發展遲緩兒童的一日總熱量、皮下脂肪厚度及四大類活動型態與BMI百分位分類及WLI分類之相關 53
第五節、 多重因子對動作發展遲緩兒童體位之預測 61
第五章、 討論 65
第一節、 不同體位分佈狀況 65
第二節、 BMI/WLI分類分佈及皮下脂肪厚度與能量攝取及活動型態之相關 67
第三節、 多重預測因子與體位之相關 71
第六章、 結論 73
第七章、 研究限制與建議 74
參考文獻 75
附錄 86
附件 95
1. Wang, Y., C. Monteiro, and B.M. Popkin, Trends of obesity and underweight in older children and adolescents in the United States, Brazil, China, and Russia. American society for clinical nutrition, 2002. 75: p. 971-977.
2. Wang, Y. and T. Lobstein, Worldwide trends in childhood overweight and obesity. International journal of pediatric obesity, 2006. 1: p. 11-25.
3. Ogden, L., et al., Prevalence and trends in overweight among US children and adolescents, 1999-2000. The journal of the American medical association, 2002. 288(14): p. 1772-1773.
4. Stamatakis, E., J. Wardle, and T.J. Cole, Childhood obesity and overweight prevalence trends in England. International journal of obesity, 2010. 34: p. 41-47.
5. 李碧慧(2005)。臺北市0~6歲兒童生長常模之建立及肥胖盛行率之分析。臺北市:國立臺北護理學院醫護教育研究所
6. Wu, Y.F., Overweight and obesity in China. BMJ, 2006. 333: p. 362-363.
7. Adair, L.S., Child and adolescent obesity: Epidemiology and developmental perspectives. Physiology and behavior, 2008. 94(1): p. 8-16.
8. De, S., J. Small, and L.A. Baur, Overweight and obesity among children with developmental disabilities. Journal of intellectual & developmental disability, 2008. 33(1): p. 43-47.
9. Reinehr, T., et al., Obesity in disabled children and adolescents. Deutsches arzteblatt international, 2010. 107(15): p. 268-275.
10. Hurvitz, E., et al., Body mass index measures in children with cerebral palsy related to gross motor function classification. American journal of physical medicine & rehabilitation, 2008. 87(5): p. 395-403.
11. Lin, W., et al., Nutrition knowledge, attitude, and behavior of Taiwanese elementary school children. Asia Pac J Clin Nutr 2007. 16(S2): p. 534-546.
12. Rimmer, J.A. and J.L. Rowland, Physical activity for youth with disabilities: A critical need in an underserved population. Developmental neurorehabilitation, 2008. 11(2): p. 141-148.
13. Ochoa, M.C., et al., Influence of parental body mass index on offspring body mass index in a Spanish population. Revista Española de Obesidad, 2009. 7(6): p. 395-401.
14. Butte, N.F., Impact of infant feeding practices on childhood obesity. American society for nutrition, 2009. 139: p. 412S-416S.
15. Seal, N. and E. Yurkovich, Physical activity within rural families of overweight preschool children: A pilot. Online journal of rural nursing and health care, 2009. 9(1): p. 56-68.
16. Jingxiong, J., et al., Relationship of parental characteristics and feeding practices to overweight in infants and young children in Beijing, China. Public health nutrition, 2008. 12(7): p. 1-6.
17. Yura, S., et al., Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell metabolism, 2005. 1: p. 371-378.
18. Neville, K.A. and J.L. Walker, Precocious pubarche is associated with SGA, prematurity, weight gain, and obesity. Archives of disease in childhood, 2005. 90: p. 258-261.
19. Shi, Z., et al., Short sleep duration and obesity among Australian children. BioMed central pediatrics, 2010. 10(609).
20. Drenowatz, C., et al., Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BioMed central pediatrics, 2010. 10(214).
21. Curtin, C., et al., The prevalence of obesity in children with autism: A secondary data analysis using nationally representative data from the national survey of children’s health. BioMed central pediatrics, 2010. 10(11): p. 1-5.
22. Schreck, K.A., et al., A comparison of eating behaviors between children with and without autism. Journal of autism and developmental disorders 2004. 34: p. 433-438.
23. Kousta, E., et al., Pleiotropic genetic syndromes with developmental abnormalities associated with obesity Journal of pediatric endocrinology & metabolism, 2009. 22: p. 581-592.
24. The WHO child growth standards(1999-2003), 0-5 years. 2006; Available from: http://www.who.int/childgrowth/en/.
25. The WHO child growth reference data for 5-19 years. 2007; Available from: http://www.who.int/growthref/en/.
26. Child growth standards. BMI-for-age 2006; Available from: http://www.who.int/childgrowth/standards/bmi_for_age/en/index.html.
27. Growth reference 5-19 years BMI-for-age (5-19 years) 2007; Available from:
http://www.who.int/growthref/who2007_bmi_for_age/en/index.html.
28. DuRant, R.H. and C.W. Linder, An evaluation of five indexes of relative body weight for use with children. J Am Diet Assoc, 1981. 78(1): p. 35-41.
29. 論壇健康促進與疾病預防委員會(2000)。第一期文獻回顧研析計畫報告書-兒童體位之評定及影響因素。台北市:財團法人國家衛生研究院。
30. 陳偉德、吳康文、宓麗麗與劉瑞蘭(1993)。重高指數:簡易而準確之小兒體重評估法。台灣醫誌,92,S128-S134。
31. Chen, A.Y., et al., Prevalence of obesity among children with chronic conditions. Obesity (Silver Spring), 2010. 18(1): p. 210-213.
32. Bandini, L.G., et al., Prevalence of overweight in children with developmental disorders in the continuousn national health and nutrition examination survey (NHANES)1999-2002. Journal of pediatrics, 2005. 146(6): p. 738-743.
33. Rimmer, J.H., R. J.L., and Y. K., Obesity and secondary conditions in adolescents with disabilities: Addressing the needs of an underserved population. Journal of adolescent health, 2007. 41(3): p. 224-228.
34. 內政部(2004)。兒童及少年福利法施行細則第六條。於2010年10月31日摘自:
http://law.moj.gov.tw/LawClass/LawSearchNo.aspx?PC=D0050010&DF=&SNo=6.
35. Dulloo, A.G., Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance. Best practice & research clinical endocrinology & metabolism, 2008. 22(1): p. 155-171.
36. 黄文俊(2000)。坐式生活型態在兒童健康體適能之比較分析研究。體育學報,28,339-348。
37. 金惠民(2000)。疾病,營養與膳食療養。台北市:華香園出版社。
38. Rogol, A.D., P.A. Clark, and J.N. Roemmich, Growth and pubertal development in children and adolescents: Effects of diet and physical activity. American society for clinical nutrition, 2000. 72: p. 521S–528S.
39. 行政院衛生署國民健康局婦幼組(2009)。台灣新版兒童生長曲線圖之Q & A。於2010年11月11日摘自:http://www.pediatr.org.tw/db/paper/141/141_1.doc.
40. Jones, K.M., Childhood obesity, BMI calculators, and medical software. Australian family physician, 2009. 38(9): p. 731-732.
41. Krebs, N.F., et al., Assessment of child and adolescent overweight and obesity. Pediatrics, 2007. 120(4): p. S193-S228.
42. The CDC body mass index-for-age percentiles. 2000; Available from:
http://www.cdc.gov/growthcharts/data/set3/chart%2016.pdf and http://www.cdc.gov/growthcharts/data/set1/chart15.pdf.
43. Using the BMI-for-age growth charts. 2002; Center for disease control and prevention:[Available from: http://www.cdc.gov/nccdphp/dnpa/growthcharts/training/modules/module1/text/module1print.pdf.
44. Cole, T.J., et al., Establishing a standard definition for child overweight and obesity worldwide: international survey. British Medical Journal, 2000. 320(6): p. 1-6.
45. 陳偉德、江界山與黃伯超(1999)。改定的生長曲線圖:台灣地區。中臺灣醫學科學雜誌,4,256-263。
46. Yeung, D.C. and S.S. Hui, Validity and reliability of skinfold measurement in assessing body fatness of Chinese children. Asia Pacific Journal of Clinical Nutrition, 2010. 19(3): p. 350-357.
47. Ng, K.C. and S.W. Lai, Application of anthropometric indices in childhood obesity. Southern medical association, 2004. 97(6): p. 566-570.
48. Loan, V., Skinfolds, circumferences, and bioimpedance, in Obesity assessment: Tools, methods, interpretations. 1996, Chapman & Hall: New York. p. 68-82.
49. 黃秀玫與張碧真(2009)。兒童及青少年肥胖評估工具。護理雜誌,56(3),78-82。
50. Knops, N., et al., Catch-up growth up to ten years of age in children born very preterm or with very low birth weight. BioMed central pediatrics, 2005. 5(26): p. 1-9.
51. Adair, L.S., Filipino children exhibit catch-up growth from age 2 to 12 years. American society for nutritional sciences, 1999. 129(6): p. 1140-1148.
52. Emerson, E., Overweight and obesity in 3- and 5-year-old children with and without developmental delay. Public Health, 2009. 123(2): p. 130-133.
53. Dosa, N.P., et al., Obesity across the lifespan among persons with spina bifida. Disabil rehabil, 2009. 31(11): p. 914-920.
54. Zanardi, M.C., et al., Body composition and energy expenditure in duchenne muscular dystrophy. European journal of clinical nutrition, 2003. 57: p. 273-278.
55. Eyzaguirre, F. and V. Mericq, Insulin resistance markers in children. Horm Res, 2009. 71(2): p. 65-74.
56. Van Mil, E.G., et al., Body composition in Prader-Willi syndrome compared with nonsyndromal obesity: Relationship to physical activity and growth hormone function. The journal of pediatrics, 2001. 139(708-714).
57. Unlu, G., et al., Developmental characteristics of children aged 1–6 years with food refusal. Public health nursing, 2008. 25(1): p. 2-9.
58. Manikam, R. and J.A. Perman, Pediatric feeding disorders. Journal of clinical gastroenterology, 2000. 30(1): p. 34-36.
59. 行政院衛生署(2002)。國人膳食營養素參考攝取量。於2010年12月11日摘自:
http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=3&now_fod_list_no=621&level_no=2&doc_no=11759.
60. Fisher, J.O., et al., Maternal Milk Consumption Predicts the Tradeoff between Milk and Soft Drinks in Young Girls’ Diets. American society for nutritional sciences, 2000. 131: p. 246-250.
61. Chen, C.L., et al., Factors associated with bone density in different skeletal regions in children with cerebral palsy of various motor severities. Developmental Medicine & Child Neurology, 2010. 53: p. 131-136.
62. 劉影梅與吳佳珊(2009)。身體活動評估與量表。中華民國糖尿病衛教學會會訊,11-17。
63. Law, M., et al., Patterns of participation in recreational and leisure activities among children with complex physical disabilities. Developmental medicine & child neurology, 2006. 48: p. 337-342.
64. Burdette, H.L. and R.C. Whitaker, Resurrecting free play in young children: looking beyond fitness and fatness to attention, affiliation, and affect Archives of pediatrics and adolescent medicine, 2005. 159: p. 46-50.
65. Timmons, B.W., P.J. Naylor, and K.A. Pfeiffer, Physical activity for preschool children — How much and how? Canadian public health association, 2007. 32: p. S122-S134.
66. Robinson, T.N., Reducing children’s television viewing to prevent obesity: a randomized controlled trial. The journal of the American medical association, 1999. 282: p. 1561-1567.
67. Slining, M., et al., Infant overweight is associated with delayed motor development. The journal of pediatrics, 2010. 157(1): p. 20-25.
68. Dubois, L. and M. Girard, Early determinants of overweight at 4.5 years in a population-based longitudinal study. International Journal of Obesity, 2006. 30: p. 610-617.
69. Moreno, L.A. and G. Rodrı´guezb, Dietary risk factors for development of childhood obesity. Current opinion in clinical nutrition and metabolic care, 2007. 10: p. 336-341.
70. Jago, R., et al., BMI from 3–6 y of age is predicted by TV viewing and physical activity, not diet. International Journal of Obesity, 2005. 29: p. 557-564.
71. Reilly, J.J., et al., Early life risk factors for obesity in childhood: cohort study. BMJ, 2005. 330: p. 1357-1359.
72. Komiya, S., et al., Gender differences in body fat of low- and high-body-mass children: relationship with body mass index. European Journal of Applied Physiology, 2000. 82: p. 16-23.
73. BARTLETT, D., et al., Correlates of decline in gross motor capacity in adolescents with cerebral palsy in Gross Motor Function Classification System levels III to V: an exploratory study. The Authors Journal Compilation, 2010. 52(7): p. e155-e160.
74. 台灣出生世代研究(Taiwan Birth Cohort Study,TBCS)(2004),於2011年6月27日摘自:http://hpe.org.tw/index.php?option=com_content&view=article&id=17&Itemid=64.
75. FUNG, E.B., et al., Feeding Dysfunction is Associated with Poor Growth and Health Status in Children with Cerebral Palsy. Journal of the American Dietetic Association, 2002. 102(3): p. 361-373.
76. 余雅萍與盧立卿(2004)。學童版中式飲食頻率問卷之發展研究。家政教育學報,6,62-76。
77. 行政院衛生署(2000)。食物份量代換表。摘自於:http://food.fda.gov.tw/foodnew/MenuThird.aspx?SecondMenuID=16&ThirdMenuID=109.
78. Rin, H., C. Schooler, and W.A. Caudill, Symptomatology and hospitalization. Culture, social structure and psycho-pathology in Taiwan and Japan. The journal of nervous of mental disease, 1973. 157: p. 296-312.
79. Cerebral Palsy Growth Charts. Available from: http://www.kennedykrieger.org/kki_misc.jsp?pid=2694&bl=1.
80. Growth Charts for Children with Down Syndrome. 2000; Available from: http://www.growthcharts.com/charts/DS/charts. htm.
81. The UK (2000) Growth charts. 2000; Available from: http://www.dsmig.org.uk/publications/growthchart.html.
82. Rosenbloom, S.T., et al., Specialized Pediatric Growth Charts For Electronic Health Record Systems:the example of Down syndrome. AMIA Annu Symp Proc, 2010. 13: p. 687-691.
83. Fenton, T.R., A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. Bio Med Central Pediatrics, 2003. 3(13).
84. Butler, M.G., et al., Growth standards of infants with Prader-Willi syndrome. Country of Publication, 2011. 127(4): p. 687-695.
85. Mei, Z., et al., Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. American Society for Clinical Nutrition, 2002. 75: p. 978-985.
86. 楊淑惠等人(1999)。台北市學齡前兒童的體位與營養攝取和血液脂質生化的關係。Nutritional sciences journal,24(2)139-151。
87. Toschke, A.M., et al., Meal Frequency and Childhood Obesity. Obesity research, 2005. 13(11): p. 1392-1298.
88. 行政院衛生署(2005)。營造孩子的健康人生:幼兒期營養參考手冊。台北市:行政院衛生署。
89. Mennella, J., et al., Feeding infants and toddlers study: The types of foods fed to hispanic infants and toddlers. Journal of the American dietetic association 2006. 106(1): p. S96-S106.
90. Gittelsohn, J., et al., Specific patterns of food consumption and preparation are associated with diabetes and obesity in a native canadian community. The journal of nutrition, 1998. 128(3): p. 541-547.
91. BARTLETT, D.j., et al., Correlates of decline in gross motor capacity in adolescents with cerebral palsy in Gross Motor Function Classification System levels III to V: an exploratory study. DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, 2010. 52(7): p. e155-e160.
92. Daniels, Z.S., et al., Obesity is a common comorbidity for pediatric patients with untreated, newly diagnosed epilepsy. Neurology, 2009. 73(9): p. 658-664.
93. Hillier, T.A., et al., Childhood Obesity and Metabolic Imprinting: The ongoing effects of maternal hyperglycemia Maternal hyperglycemia and childhood obesity, 2007. 30(9): p. 2287-2292.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top