跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李亞澤
研究生(外文):Ya-Tze Li
論文名稱:分數階主動式電感
論文名稱(外文):Fractional - Order Active Inductor
指導教授:杜弘隆
指導教授(外文):Hung-Lung Tu
口試委員:杜弘隆沈鼎嵐王啟林
口試委員(外文):Hung-Lung TuDing-lan ShenChi-Ling Wang
口試日期:2015-01-12
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:旋相器主動式電感分數階層
外文關鍵詞:gyratoractive inductorfractional-order
相關次數:
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在通訊系統當中,許多電路需要使用到被動式電感,但隨著半導體技術的發展,射頻積體電路的面積卻受到傳統被動螺旋式電感的限制,藉由主動式電感得以改善品質因數和電感值,並且在晶片製作上,主動式電感需要的面積比被動螺旋式電感還要小。
本篇論文針對分數階微積分的基本介紹,利用電路元件將分數階微積分實體化,並在傳統主動式電感的電路架構中,為了實現分數階的主動式電感,我們將旋相器的電路架構加上BJT元件取代外加電容,根據理論推導及Hspice模擬,我們證實了所提分數階次主動式電感的可行性,也利用電路板做實際量測,並藉由R&S® FSH8手持式頻譜分析儀,量測實際電路的史密斯圖和S參數。

The passive inductors are employed broadly in communication circuits whereas due to the large chip area requirement, the applications of the inductor is resisted in some special circuits such as power amplifiers. On the other hand, active inductors are prevalent due to the tunablity of their quality factor and inductance.
In this thesis, we introduce the fundamentals of fractional-order calculus. To realize the fractional-order active inductors, the conventional gyrator architecture and a bipolar junction transistor (BJT) are employed. The proposed fractional-order active inductor is realized by configuring with a bipolar junction transistor and the architecture of the conventional gyrator. According to the mathematical derivation and Hspice simulation results, the feasibility of the proposed active inductors is validated. The measured S-parameter of the circuit configured with discrete components can also further verify the spectrum of the proposed fractional-order active inductor.

摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 導論 1
1.1 研究動機 1
1.2 論文組織 2
第二章 分數階的基本微積分 3
2.1 緣起與定義 3
2.2 伽瑪函數 4
2.3 分數階導數的運算 4
2.4 拉普拉斯轉換 5
第三章 分數階元件的實現 6
3.1 分數階電容器 6
3.2 P-N接面的分數階阻抗 7
第四章 被動式電感與主動式電感 9
4.1 被動式電感 9
4.2 主動式電感 10
4.2.1 電感特性 11
4.2.2 旋相器 12
4.2.3 主動式電感 14
4.2.4 模擬結果 15
第五章 分數階主動式電感 19
5.1 分數階電路元件 19
5.2 分數階主動式電感 21
5.3 模擬結果 22
第六章 預測分析與模擬量測 26
6.1 預測分析 26
6.1.1 主動式電感 27
6.1.2 分數階主動式電感 31
6.2 模擬結果 34
6.2.1 主動式電感 34
6.2.2 分數階主動式電感 38
6.3 量測方法 47
第七章 結論與未來研究方向 48
7.1 結論 48
7.2 未來研究方向 48
參考文獻 49
[1]F. Yuan, “CMOS gyrator-C active transformers,” IET on Circuits, Devices & Systems, vol. 1, pp. 494-508, Dec. 2007.
[2]K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993.
[3]Lokenath Debnath, “Fractional calculus fundamentals,” http://mechatronics.ece. usu.edu/foc/cdc02tw/cdrom/Lectures/Lecture2/fractionals.pdf, 2015.
[4]K. Steiglit, “An RC impedance approximation to S-1/2,” IEEE Trans. Circuits Syst., vol. 11, pp. 160-161, 1964.
[5]K. Biswas, S. Sen and P. Dutta, “Modelling of a capacitive probe in a polarizable medium,” Sensors and Actuators A: Physical, vol. 120, pp. 115-122, 2005.
[6]K. Biswas, S. Sen and P. Dutta, “Realization of a constant phase element and its performance study in a differentiator circuits,” IEEE Circuits and Systems II, Express Briefs, vol. 53, pp. 802-806, 2006.
[7]G. Carlson and C. Halijak, “Approximation of fractional capacitors (1/s)1/n by a regular newton process,” IEEE Trans. Circuits Syst., vol. CAS-11, no. 2, pp. 210-213, Mar. 1964.
[8]M. Nakagaw and K. Sorimachi, “Basic characteristics of a fractance device,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol. E75-A, no. 12, pp. 1814-1819, 1992.
[9]N. D. M. Asri and N. Soin, “Development of active inductor in CMOS tunable RF bandpass filter,” in Proc. 2011 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), pp. 315-318, Sep. 2011.
[10]R. M. Weng and R. C. Kuo, “An ω0-Q tunable CMOS active inductor for RF bandpass filters,” in Proc. 7th International Symposium on Signals, Systems and Electronics, pp. 571-574, Aug. 2007.
[11]G. Huang and B. -S. Kim, “Programmable active inductor-based wideband VCO/QVCO design,” Microwaves, Antennas & Propagation, IET, vol. 2, no. 8, pp. 830-838, 2008.
[12]Igor Podlubny, Fractional Differential Equations: An Introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998.
[13]K. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1974.
[14]Wikipedia,“Gamma function,” http://en.wikipedia.org/wiki/Gamma_function, 2015.
[15]Wikipedia, “Fractional calculus,” http://en.wikipedia.org/wiki/Fractional_
calculus, 2015.
[16]Mahmoud H. Annaby and Zeinab S. Mansour, Riemann–Liouville q-fractional calculi, Springer Berlin Heidelberg, 2012.
[17]Wikipedia, “Laplace transform,” http://en.wikipedia.org/wiki/Laplace_transform, 2015.
[18]K. Biswas, S. Sen and P. Dutta, “Modelling of a capacitive probe in a polarizable medium,” Sensors and Actuators A: Physical, vol. 120, pp. 115-122, 2005.
[19]E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, Theory, Experiment, and Applications, Wiley, 2005.
[20]G. Garcia-Belmonte, J. Bisquert and V. Caselles, “The small signal AC impedance of a short p-n junction diode,” Solid-State Electronics, vol. 42, no. 6, pp. 939-941, 1998.
[21]Wikipedia, “Inductance,” http://en.wikipedia.org/wiki/Inductance, 2015.
[22]Akhil Gupta, Shahrokh Ahmadi and Mona Zaghloul, “Low voltage high-Q CMOS active inductor for RF applications,” http://www.iiis.org/CDs2010/CD2010IMC/ISAS_2010/PapersPdf?UA836EE.pdf, 2010.
[23]H. Ugur Uyanik and Nil Tarim, “Compact low voltage high-Q CMOS active inductor suitable for RF applications,” Analog Integrated Circuit and Signal Processing, vol. 51, no. 3, pp. 191-194, June 2007.
[24]何滿龍,「射頻電路設計實習」,滄海書局,2001。
[25]T. Freeborn, B. Maundy and A. Elwakil, “Towards the realization of fractional step filters,” in Proc. IEEE International Symposium on Circuits and Systems, pp. 1037-1040, 2010.
[26]Haiqiao Xiao, R. Schaumann, W. R. Daasch, P. K. Wong and B. Pejcinovic, “A radio-frequency CMOS active inductor and its application in designing high-Q filters,” in proc. the 2004 International Symposium on Circuits and Systems, vol. 4, pp. IV-197-200, May 2004.
[27]Yue Wu, X. Ding, M. Ismail and H. Olsson, “RF bandpass filter design based on CMOS active inductors,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 942-949, Dec. 2003.
[28]Jenn-Tzey Yang, Shao-Kang Hsieh and Ping-Jung Tsai, “A wide tuning range voltage-controlled oscillator with active inductors for bluetooth applications,” in Proc. IEEE International Symposium on Circuits and Systems, pp. 2097-2100, May 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top