中文部分
1.陳學群(2006)。應用獨立成份分析、支援向量迴歸及類神經網路於財務時間序列預測模式之建構。輔仁大學應用統計研究所碩士論文,台北縣。英文部分
1.Adams, B. M., & Tseng, L. T. (1998). Robustness of forecast-based monitoring schemes. Journal of Quality Technology, 30, 328-329.
2.Alwan, L. C., & Roberts, H. V. (1988). Time series modeling for statistical process control. Journal of Business and Economic Statistics, 6, 87-95.
3.Box, G. E. P., Jenkins, G. M., & Reinsel, G. C., (1994). Time series analysis: Forecasting and control. Englewood Cliffs, NJ: Prentice-Hall.
4.Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machines learning: Support vector machines for pharmaceutical data analysis. Computer & Chemistry, 26, 5-14.
5.Cheng, C. S., & Tzeng, C. A. (1994). A neural network approach for detecting shifts in the process mean and variability. Journal of the Chinese Institute of Industrial Engineers, 11(2), 67-75.
6.Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal Production Research, 40(17), 4449-4466.
7.Chiu, C. C., Chen, M. K., & Lee, K. M. (2001). Shifts recognition in correlated process data using a neural network. International Journal of System Science, 32(2), 137-143.
8.Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113-126.
9.Chung, H. M., & Gray, P. (1999). Special section: Data mining. Journal of Management Information Systems, 16, 11-16.
10.Cook, D. F., & Chiu, C. C. (1998). Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions, 30, 227-234.
11.Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
12.English, J. R., Lee, S. C., Martin, T. W., & Tilmon, C. (2000). Detecting changes in autoregressive processes with X-Bar and EWMA Charts. IIE Transactions, 32, 1103-1113.
13.Faltin, F. W., Mastrangelo, C. M., Runger, G. C., & Ryan, T. P. (1997). Considerations in the monitoring of autocorrelated and independent data. Journal of Quality Technology, 29, 131-133.
14.Harris, T. J., & Ross, W. H. (1991). Statistical process control procedures for correlated observations. The Canadian Journal of Chemical Engineering, 69, 48-57.
15.Hsu, C. W., Lin, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Retrieved Nov. 21, 2004, from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
16.Hwarng, H. B. (2004). Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research, 42(3), 573-595.
17.Jiang, W., Tsui, K. L., & Woodall, W. H. (2000). A new SPC monitoring method :The ARMA chart. Technometrics, 42, 399-410.
18.Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., & Ohno, H. (2003). Monitoring independent components for fault detection. AIChE Journal, 49, 969-976.
19.Kim, K. I., Jung, K., Park, S. H., & Kim, H. J. (2002). Support vector machines for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1542-1550.
20.Lee, T. S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28(4), 743-752
21.Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F., (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23(3), 245-254.
22.Longnecker, M. T., & Ryan, T. P. (1993). Charting correlated process data. Working paper, Department of Statistics, Texas A&M University, College Station, Texas.
23.Lu, C. W., & Reynolds, M. R. JR. (1999). EWMA control charts for monitoring the mean of autocorrelated processes. Journal of Quality Technology, 31, 166-188.
24.Lu, C. W., & Reynolds, M. R. JR. (2001). CUSUM charts for monitoring an autocorrelated processes. Journal of Quality Technology, 33, 316-334.
25.Mitra, S., Chen, W., & Xu, Y. H. (1999). Application of micro-GC for continue monitoring for organic emissions from a catalytic incinerator. Journal of Microcolumn Separations, 11, 239-245.
26.Montgomery, D. C. (2001). Introduction to statistical quality control. New York, N.Y.: John Wiley & Sons.
27.Montgomery, D. C., Keats, J. B., Runger, G. C., & Messina, W. S. (1994). Integrating statistical process control and engineering process control. Journal of Quality Technology, 26, 79-87.
28.Montgomery, D. C., & Mastrangelo, C. M. (1991). Some statistical process control for autocorrelation data. Journal of Quality Technology, 23, 179-193.
29.Norinder, U. (2003). Support vector machine models in drug design: Applications to transport processes and QSAR using simplex optimizations and variable selection. Neurocomputing, 55, 337-346.
30.Pugh, G. A. (1989). Synthetic neural networks for process control. Computers and Industrial Engineering, 17, 24-26.
31.Runger, G. C., Willemain, T. R., & Prabhu, S. (1995). Average run lengths for CUSUM control charts applied to residuals. Communication in Statistics-Theory and Methods, 24, 273-282.
32.Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28, 127-135.
33.Tseng, S., & Adams, B. M. (1994). Monitoring autocorrelated processes with an exponentially weighted moving average forecast. Journal of Statistical Computation and Simulation, 50, 187-195.
34.Vapnik, V. N., Golowich, S., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9 281-287.
35.Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13, 211-221.
36.Wardell, D. G., Moskowitz, H., & Palnte, R. D. (1994). Run-length distributions of special-cause control charts for correlated processes. Technometrics, 36, 3-17.
37.Wieringa, J. E. (1999). Statistical process control for serially correlated data. Ph. D. Dissertation, University of Groningen, Netherlands.
38.Zhang, N. F. (1998). A statistical control chart for stationary process data. Technometrics, 35, 37-52.