跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李國宏
研究生(外文):Kuo-Hoong Lee
論文名稱:整合於表面電漿共振感測器之微流體系統及其於免疫分析之應用
論文名稱(外文):Microfluidic systems for SPR sensing using microarray immunoassay
指導教授:李國賓李國賓引用關係
指導教授(外文):Gwo-Bin Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:125
中文關鍵詞:免疫分析表面電漿共振微機電系統微流體晶片
外文關鍵詞:MEMSMicrofluidicsSPRImmunoassay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:2
本研究為提出一創新之整合微流體晶片及表面電漿共振(Surface Plasmon Resonance, SPR)感測技術於免疫分析之應用。SPR影像感測器為一具共光程移相干涉技術之相位量測系統,並針對表面電漿共振所造成之高靈敏相位變化,可以高通量即時動態量測生物分子之間的交互作用之平行檢測。
在微流體晶片製作上,係利用微機電系統(Micro-electro-mechanical-systems, MEMS)製程技術將微流體元件及微型溫度控制元件製作於玻璃與聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)等基材之上。本研究所製作之流速感測器能有效校正微氣動幫浦流率之誤差,以精確地控制檢體進樣之流率;微型溫度控制器能精準地控制微陣列檢測區內之溫度變化,且誤差範圍可控制在0.1℃以內,可以藉此降低SPR系統之雜訊並提高分析訊號之噪訊比。本實驗首先利用自組單層分子(Self-assembled monolayer, SAM)技術有效地改變金膜表面的化學性質而讓兔子的免疫球蛋白抗體(anti-rabbit IgG)穩定地被固定在金表面上。再利用微流體晶片中的蠕動式微氣動幫浦與微氣動閥門將二次抗檢體透過微流道傳送到微陣列反應區域,並且同時運用SPR影像感測器進行即時性分析。
最後,本研究成功地將微流體晶片結合SPR影像感測器的高靈敏度、高解析度、動態分析及不須事先標定生物分子之特性,以陣列方式分析蛋白質資訊。所得到的結果顯示,利用此一方法能有效地檢測不同濃度的免疫球蛋白抗體及非特異性抗體(non-specific antibody)的分辨。此研究可針對醫療診斷及疾病檢測分析上提供一種便利且穩定之研究工具。
This study reports a novel microfluidic chip integrated with arrayed immunoassay for SPR (Surface plasmon resonance) phase imaging of specific bio-samples. The SPR imaging system uses a surface-sensitive optical technique to detect two-dimensional spatial phase variation caused by antibodies absorbed on a sensing surface composed of highly-specific proteins films. The developed system has a high resolution and a high-throughput screening capability and has been successfully applied to the analysis of multiple bio-molecules without the need for additional labeling in the long-term measurement.
The microfluidic chip was fabricated by using MEMS (micro-electro-mechanical-systems) technology on glass and PDMS (Polydimethylsiloxane) substrates to facilitate well-controlled and reproducible analyte delivery. A micro flow sensor was fabricated to measure the pumping rate generated by the micropumps. In addition, since SPR detection is very sensitive to temperature variation, a micromachine-based temperature control module comprised of micro-heaters and a temperature sensor was used to maintain a uniform temperature with a variation less than 0.1°C during measurement. Besides, the SAM (self-assembled monolayers) technique was used to pattern the surface chemistry of the gold to adsorb rabbit IgG and its antibody to the modified substrates. The microfluidic chip is capable of transporting a specific amount of IgG solution inside multiple microchannels using micropumps/valves to the arrayed detection areas that are locally deposited so that highly-sensitive, highly-specific bio-sensing can be achieved. The developed microfluidic chips employed in SPR imaging experiments for immune detection could successfully detect the interaction of rabbit IgG and its antibodies. Various rabbit IgG concentrations and antibody interactions have been measured using the developed method. The integrated system was also tested for nonspecific interactions. Experimental data showed that no significant binding was found.
The microfluidic chips were developed to have the potential to be widely used for bio-sensing applications. The development of microfluidic devices integrated with the SPR detecting system has several advantages, including being labeling-free, having a high sensitivity, and being capable of quantitatively analyzing nano-scale bio-molecules in real-time format. The developed system could be promising for various applications including medical diagnostics and biomedical research.
Abstract .......................................i
摘要..........................................iii
致謝........................................... v
Table of Contents ............................vii
List of Tables ................................ x
List of Figures ...............................xi
Nomenclature .................................xxi

Chapter 1 Introduction..........................1
1-1 Microelectromechanical systems .............1
1-1-1 Bio-MEMS Technology ......................1
1-1-2 Microfluidic system ......................4
1-2 Surface plasmon resonance technique.........9
1-2-1 Review of SPR.............................9
1-2-2 SPR imaging system ..................... 12
1-3 Immunoassay technique..................... 16
1-3-1 SPR based immunosensor ................. 18
1-4 Motivation and Objectives................. 23

Chapter 2: Theory and Design.................. 26
2-1 The design of microfluidic chip .......... 26
viii
2-1-1 Pneumatic Micropumps and Microvalves ... 29
2-1-2 The operation of flow sensor............ 33
2-1-3 Micro Temperature Sensors and Micro Heaters....................................... 35
2-1-4 The design of the micromachine-based temperature control system.................... 39
2-2 Surface Plasmon Resonance ................ 41
2-2-1 SPR technique theory.................... 41
2-2-2 PSI of SPR imaging system .............. 44
2-3 Immunoassay method........................ 47
2-3-1 Antibody-Antigen Interactions .......... 48
2-3-2 Surface immobilization ................. 51

Chapter 3: Materials and Fabrication.......... 53
3-1 Photomask fabricate ...................... 54
3-2 Structure cleaning........................ 55
3-2-1 Glass and silicon cleaning.............. 55
3-2-2 Slide cleaning.......................... 57
3-3 Micromachine-based temperature control system........................................ 57
3-3-1 E-beam deposition ...................... 57
3-3-2 Lift-off technique ..................... 59
3-3-3 Lithography process..................... 61
3-4 Soft lithography of microfluidic system... 63
3-4-1 SU-8 molding............................ 63
3-4-2 PDMS casting ........................... 67
3-5 Structure bonding ........................ 70
3-6 SPR used slide sputtered gold thin film ...73
3-7 Reagents preparation ..................... 74

Chapter 4: Results and Discussion............. 79
4-1 The assembled microfluidic chip .......... 79
4-1-1 Micropump and microvalve ............... 81
4-1-2 Micro temperature control module ....... 87
4-2 AFM and bioassay scanner ................. 91
4-2-1 Protein analysis by using AFM .......... 92
4-2-2 Microarray fluorescence scanner......... 94
4-3 Result of SPR sensing detection .......... 96
4-3-1 Detection of SPR imaging system......... 99

Chapter 5 Conclusions and Future Work........ 110
References .................................. 114
Curriculum vitae............................. 122
Publications ................................ 123
1. S. J. Lee and S. Y. Lee, “Micro total analysis system (μ-TAS) in biotechnology,” Applied Microbiology and Biotechnology, Vol. 64, pp. 289-299, 2004.
2. G. H. W. Sander and A. Manz, “Chip-based microsystem for genomic and proteomic analysis,” Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.
3. M. Madou, “Fundamentals of microfabrication,” CRC Press, New York, 1997.
4. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, Vol. 21, pp. 27-40. 2000.
5. G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual Review of Biomedical Engineering, Vol. 3, pp. 335-73, 2001.
6. F. S. Ligler and C. A. R. Taitt, “Optical biosensors: present and future,” Elsevier, The Netherlands, 2002.
7. J. S. Lin, B. W. Chang, G. B. Lee, C. C. Lin and S. H. Chen, “High-aspect-ratio microchips for microfluidic applications,” The 5th Nano Engineering and Micro System Technology Workshop, Tainan, Taiwan, pp. 22-23, 2001.
8. J. G. Spencer, “Piezoelectric micropump with three valve working peristaltically,” Sensor and Actuators A, Vol. 21-23, pp. 203-206, 1990.
9. N. T. Nguyen, X. Y. Huang and Toh Kok Chuan, “MEMS-micropumps: a review,” Journal of Fluids Engineering, Vol. 124, pp. 384-392, 2002.
10. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
11. A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold and S. R. Quake, “An integrated microfabricated cell sorter,” Analytical Chemistry, Vol. 74, pp. 2451-2457, 2002.
12. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel and H. Biebuyck, “Microfluidic networks for chemical patterning of substrate: design and application to bioassays,” Journal of the American Chemical Society, Vol. 120, pp. 500-508, 1998.
13. E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, “Patterned delivery of immunoglobulins to surfaces using microfluidic networks,” Science, Vol. 276, pp. 779-781, 1997.
14. O. Hofmann, G. Voirin, P. Niedermann and A. Manz, “Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides,” Analytical Chemistry, Vol. 74, pp. 5243-5250, 2002.
15. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Zeitschrift für Naturforschung, Vol. 23A, pp. 2135-1236, 1968.
16. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, Vol. 216, pp. 398-410, 1968.
17. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor and Actuators B, Vol. 54, pp. 3-15, 1999.
18. J. Lahiri, L. Isaacs, J. Tien and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study,” Analytical Chemistry, Vol. 71, pp. 777-790, 1999.
19. B. Liedberg, C. Nylander and I. Lundstrum, ‘‘Surface-plasmon resonance for gas detection and biosensing,’’ Sensor and Actuators B, Vol. 4, pp. 299-304, 1983.
20. B. Liedberg, C. Nylander and I. Lundstrom, ‘‘Biosensing with surface-plasmon resonance–how it all started,’’ Biosensors and Bioelectronics, Vol. 10, pp. i-ix, 1995.
21. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong and R. G. Woodbury, ‘‘A commercial solution for surface-plasmon sensing,’’ Sensor and Actuators B, Vol. 35, pp. 212-216, 1996.
22. P. Schuck, ‘‘Use of surface-plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,’’ Annual Review of Biophysics and Biomolecular Structure, Vol. 26, pp. 541-566, 1997.
23. C. E. Jordan and R. M. Corn, “Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces,” Analytical Chemistry, Vol. 69, pp. 1449-1356, 1997.
24. H. J. Lee, T. T. Goodrich and R. M. Corn, “SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films,” Analytical Chemistry, Vol. 73, pp. 5525-5531, 2001.
25. P. Guedon, T. Livache, F. Martin, F. Lesbre and A. Roget, “Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging,” Analytical Chemistry, Vol. 72, pp. 6003-6009, 2000.
26. Y. Xinglong, W. Dongsheng, W. Dingxin, O. Y. J. Hua, Y. Zibo, D. Yonggui, L. Wei and Z. Xinsheng, “Micro-array detection system for gene expression products based on surface plasmon resonance imaging,” Sensor and Actuators B, Vol. 91, pp. 133-137, 2003.
27. M. L. Shank-Retzlaff and S. G. Sligar, “Analyte gradient-surface plasmon resonance: A one-step method for determining kinetic rates and macromolecular binding affinities,” Analytical Chemistry, Vol. 72, pp. 4212-4220, 2000.
28. A. L. Ghindilis, P. Atanasov, M. Wilkins and E. Wilkins, “Immunosensors: electrochemical sensing and other engineering approaches,” Biosensors and Bioelectronics, Vol. 13, pp. 113-131, 1998.
29. B. Hock, “Antibodies for immunosensors. A review,” Analytica Chimica Acta, Vol. 347, pp. 177-186, 1997.
30. C. Berggren, B. Bjarnason and G. Johansson, “An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step,” Biosensors and Bioelectronics, Vol. 13, pp. 1061-1068, 1998.
31. I. Ben-Dov, I. Willner and E. Zisman, “Piezoelectric immunosensors for urine specimens of chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses,” Analytical Chemistry, Vol. 69, pp. 3506-3512, 1997.
32. E. L. Schmid, A. P. Tairi, R. Hovius and H. Vogel, “Screening ligands for membrane protein receptors by total internal reflection fluorescence: The 5-HT3 serotonin receptor,” Analytical Chemistry, Vol. 70, pp. 1331-1338, 1998.
33. Y. Iwasaki and O. Niwa, “Integration of heterogeneous biosensors on microfluidic chip using surface plasmon resonance,” The 7th International Conference on Miniaturized Chemical and Blochemlcal Analysts Systems, Squaw Valley, California, pp. 833-836, 2003.
34. W. M. Mullett, E. P. C. Lai and J. M. Yeung, “Surface plasmon resonance-based immunoassays,” Methods, Vol. 22, pp. 77-91, 2000.
35. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman and J. Greve, “Surface plasmon resonance multisensing,” Analytical Chemistry, Vol. 70, pp. 703-706, 1998.
36. E. Fontana, R. H. Pantell and S. Strober, “Surface plasmon immunoassay,” Applied Optics, Vol. 29, pp. 4694-4704, 1990.
37. J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sensors and Actuators B, Vol. 94, pp. 161-164, 2003.
38. Y. Xinglong, W. Dongsheng, W. Dingxin, O. Y. J. Hua, Y. Zibo, D. Yonggui, L. Wei and Z. X. Shenb, “Micro-array detection system for gene expression products based on surface plasmon resonance imaging,” Sensors and Actuators B, Vol. 91, pp. 133-137, 2003.
39. J. M. Brockman, B. P. Nelson and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annual Review of Physical Chemistry, Vol. 51, pp. 41-63, 2000.
40. W. Knoll, M. Zizlsperger, T. Liebermann, S. Arnold, A. Badia, M. Liley, D. Piscevic, F. J. Schmitt and J. Spinke, “Streptavidin arrays as supramolecular architectures in surface-plasmon optical sensor formats,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 161, pp. 115-137, 2000.
41. Y. Xinglong, W. Dingxin, W. Xing, D. Xiang, L. Wei and Z. Xinsheng, “A surface plasmon resonance imaging interferometry for protein micro-array detection,” Sensors and Actuators B, Vol. 108 pp. 765-771, 2005.
42. H. S. Ro, B. H. Koh, S. O. Jung, H. K. Park, Y. B. Shin, M. G. Kim and B. H. Chung, “Surface plasmon resonance imaging protein arrays for analysis of triple protein interactions of HPV, E6, E6AP, and p53,” Proteomics, Vol. 6, pp. 2108-2111, 2006.
43. V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, “Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging,” Analytical Chemistry, Vol. 76, pp. 7257-7262, 2004.
44. S. C. Huang, G. B. Lee, F. C. Chien, S. J. Chen,W. J. Chen and M. C. Yang, “A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1251-1257, 2006.
45. G. J. Wegner, A. W. Wark, H. J. Lee, E. Codner, T. Saeki, S. Fang and R. M. Corn, “Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays,” Analytical Chemistry, Vol. 76, pp. 5677-5684, 2004.
46. C. H. Wang and G. B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,” Biosensors and Bioelectronics, Vol. 21, pp. 419-425, 2005.
47. L. H. He, L. H. Lim and B. S. Wu, “A continuum model for size-dependent deformation of elastic films of nano-scale thickness,” International Journal of Solids and Structures, Vol. 41, pp. 847-857, 2004.
48. S. K. Gamage, N. Okulan and H. T. Henderson, “Behavior of bulk micromachined silicon flow sensor in the negative differential resistance regime,” Journal of Micromechanics and Microengineering, Vol. 10, pp. 421-429, 2000.
49. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, Berlin, 1988.
50. D. Malacara, “Optical Shop Testing,” John Wiley & Sons, Inc., New York, 1992.
51. P. Hariharan, B. F. Oreb and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Applied Optics, Vol. 26, pp. 2504-2505, 1987.
52. Y. D. Su, S. J. Chen and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Optics Letters, Vol. 30, pp. 1488-1490, 2005.
53. B. Alberts, K. Roberts, J. Lewis, M. Raff, P. Walter and A. Johnson, “Molecular Biology of the Cell,” Garland Science, New York, 2002.
54. R. Karlsson, A. Michaelsson and L. Mattsson, “Kinetic analysis of monoclonal antibody–antigen interactions with a new biosensor based analytical system,” Journal of Immunological Methods, Vol. 145, pp. 229-240, 1991.
55. W. M. Mullett, E. P. C. Lai and J. M. Yeung, “Surface plasmon resonance-based immunoassays,” Methods, Vol. 22, pp. 77-91, 2000.
56. Data sheet for NANOTM SU-8 negative tone photoresists, formulations 50 & 100, Micro Chemical Corp., Massachusetts, USA.
57. 黃仕強, 整合型分子模版微流體晶片應用於表面電漿共振生物感測器之檢測, 國立成功大學工程科學研究所碩士論文, 2005.
58. A. B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, Vol. 948, pp. 225–233, 2002.
59. MFP-3D atomic force microscope installation and operation manual, Asylum Research Inc., California, USA.
60. 蘇園登, 表面電漿共振相位影像系統, 國立中央大學機械工程研究所碩士論文, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊