跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/12/02 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳正元
研究生(外文):Cheng-YuanChen
論文名稱:使用最佳形狀搜索法與反向合成式動態外觀模型實現人臉特徵點的偵測與追蹤
論文名稱(外文):Facial Feature Point Detection using Shape Optimized Search and Tracking using Inverse Compositional Active Appearance Models
指導教授:連震杰
指導教授(外文):Jenn-Jier Lien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:47
中文關鍵詞:人臉特徵點偵測與追蹤最佳形狀搜索反向式動態外觀模型
外文關鍵詞:Facial Feature Point Detection and trackingProject-out ICAAMShape Optimized Search
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由計算機來分析人類的行為一直是電腦科學致力的方向之一,近年來隨著計算設備與攝影設備價格的下降,以攝影機實作的非接觸式分析系統漸漸熱門起來。而計算機效能提升與電腦視覺技術的蓬勃發展,也使得原本需要大量時間的分析系統,達到可以即時分析了解人類行為的階段。當中人類臉部的特徵點的位置,能提供了解人類臉部行為的資訊,像是關注的方向,與心情等等。本論文提出一套即時系統,能在找到初始臉部資訊後,快速準確的追蹤特徵點。系統的輸入為攝影機拍攝的連續人臉影像,首先會利用人臉偵測系統找到人臉大致的位置,接著用代表特徵點的樣板比對找到的臉,為各點都建立一張位置的機率表,最後再用最佳化演算法,求得特徵點在合理形狀下各點在機率表上的機率總和最佳者,作為初始特徵點偵測結果。有了初始位置後,接著計算正面的人臉影像,藉由分析正面的人臉影像所產生的誤差,更新特徵點位置,來實現特徵點追蹤演算法。
Understanding human action is one of the most important issues of computer vision. In recent years, non-contact human action analysis system using camera has become more and more popular because the price of camera devices are getting lower. In human action analysis systems, facial feature points can tell a lot about the motion of human head such as gazing direction, drowsy and facial expression. In this thesis, a real-time system is proposed to detect the facial feature points and track these points with high accuracy and low computational cost. In the feature point detection algorithm of our system, approximately face position will be detected and compared with each feature template to create the location probability table for each point. After that, we can extract the feature points from the face by maximizing the sum of each feature point's location probability with suitable shape constraint. The feature point tracking algorithm of our system can be deliberated into three major steps. The first step is warping the face to frontal view by estimating current feature point positions. The second step is to estimate the current warping error by comparing the warped face with the trained frontal face template. The third step is updating the feature point positions by analyzing current warping error. System can track the feature points with high accuracy by iteratively updating the current feature point positions.
摘要 IV
Abstract V
誌謝 VI
Table of Contents VII
List of Tables IX
List of Figures X
Ch.1 Introduction 1
1.1 Motivation 1
1.2 Related Work 2
1.3 System Flowchart 4
Ch.2 Sparse Feature Point (Shape) Detection Based on Point Probability Map and Downhill Simplex Optimization 6
2.1 Face Detection using AdaBoost 7
2.2 Sparse Point Probability Map Creation using Template Matching 8
2.2.1 Feature Template Creation for Point Probability Map 9
2.2.2 Point Probability Map Creation for Shape Optimized Search 10
2.3 Sparse Point Detection using Shape Optimized Search 11
2.3.1 Shape Model Creation using Principle Component Analysis 12
2.3.2 Sparse Point Detection using Downhill Simplex Optimization under Global Shape Constraint 13
Ch.3 Extended Feature Point (Mesh) Estimation using Direct Combined Model 14
3.1 Mesh Model Creation using Principle Component Analysis 15
3.2 Mesh Missing Dimension Estimation using Direct Combined Model 17
Ch.4 Mesh Point Refinement and Tracking using Inverse Compositional Active Appearance Models 18
4.1 Frontal-View Facial Appearance Error Estimation using Mesh Based Piecewise Affine Warping 20
4.1.1 Frontal-View Facial Appearance Creation using Piecewise Affine Warping 21
4.1.2 Appearance Model Creation using Principle Component Analysis 23
4.2 Frontal-View Mesh Model Error Parameter Estimation using Newton’s Method 24
4.2.1 Regression Matrix Creation for Estimating Frontal-View Mesh Model Error Parameter 28
4.2.2 Orthogonal Vector Estimation for Mesh Pose Transformation 30
4.3 Non-Frontal-View Mesh Point Updating using Inverse Piecewise Affine Warping 32
Ch.5 Experimental Result 34
5.1 Convergence Failure and Time Cost 35
5.2 Case Study in Convergence Failure 39
5.3 Point-to-Point Location Accuracy 41
5.4 Pose Variation Mesh Tracking Result 43
Ch.6 Conclusion and Future Work 44
Reference 45
[1]S. Baker, R. Gross, I. Matthews, and T. Ishikawa, Lucas-Kanade 20 Years on: A Unifying Framework: Part 2, Technical Report CMU-RI-TR-03-01, Carnegie Mellon University Robotics Institute, 2003.
[2]S. Baker and I. Matthews, Lucas-Kanade 20 Years on: A Unifying Framework: Part 1: The Quantity Approximated, the Warp Update Rule, and the Gradient Descent Approximation, International Journal of Computer Vision, (accepted to appear in) 2004.
[3]S. Baker, I. Matthews, J. Xiao, R. Gross, T. Kanade, and T. Ishikawa, Real-Time Non-rigid Driver Head Tracking for Driver Mental State Estimation, Proc. 11th World Congress Intelligent Transportation Systems, 2004.
[4]C.M. Bishop and N.M. Nasrabadi, Pattern Recognition and Machine Learning, Springer, 2006.
[5]D.S. Bolme, B.A. Draper, and J.R. Beveridge, Average of Synthetic Exact Filters, Conf. Computer Vision and Pattern Recognition, 2009.
[6]R. Brunelli and T. Poggio, Face Recognition: Features vs. Templates, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15, no. 10, pp. 1042-1053, 1993.
[7]P.J. Burt, Smart Sensing within a Pyramid Vision Machine, Proceedings of the IEEE Vol. 76, pp. 1006-1015, 1988.
[8]T.F. Cootes and C.J. Taylor, Active Shape Models, In 3rd British Machine Vision Conference, pp. 266-275, 1992.
[9]T.F. Cootes, G.J. Edwards, and C.J. Taylor, Active Appearance Models, In 5th European Conference on Computer Vision, Vol. 2, pp. 484-498, 1998.
[10]T.F. Cootes and C.J. Taylor, Statistical Models of Appearance for Computer Vision, University of Manchester, 2004.
[11]C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning, 1995.
[12]D. Cristinacce and T. Cootes, A Comparison of Shape Constrained Facial Feature Detectors, Conf. Automatic Face and Gesture Recognition, pp. 375-380, 2004.
[13]D. Cristinacce and T. Cootes, Facial Feature Detection and Tracking with Automatic Template Selection, Conf. Automatic Face and Gesture Recognition, pp. 429-434, 2006.
[14]A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, Series B (Methodological), pp. 1-38, 1977.
[15]Y. Gong and W. Xu, Machine Learning for Multimedia Content Analysis, Springer, 2007.
[16]R.C. Gonzalez and R.E. Woods, Digital Image Processing, 3rd Edition, Pearson, 2007.
[17]K. Grauman, M. Betke, J. Gips, and G.R. Bradski, Communication via Eye Blinks - Detection and Duration Analysis in Real Time, Conf. Computer Vision and Pattern Recognition, pp. 1010-1017, 2001.
[18]R. Gross, I. Matthews, and S. Baker, Constructing and Fitting Active Appearance Models with Occlusion, Computer Vision and Pattern Recognition Workshop, 2004.
[19]A.K. Jain, Y. Zhong, and S. Lakshmanan, Object Matching using Deformable Templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 267-278, 1996.
[20]F. Jurie and M. Dhome, A Simple and Efficient Template Matching Algorithm, Eighth IEEE International Conference on Computer Vision. Vol. 2, 2001.
[21]S.Z. Li, Markov Random Field Modeling in Image Analysis, Springer, 2009.
[22]Z. Liu and H. Ai, Automatic Eye State Recognition and Closed-Eye Photo Correction, International Conference on Pattern Recognition, pp. 1-4, 2008.
[23]I. Matthews and S. Baker, Active Appearance Models Revisited, International Journal of Computer Vision, pp. 135-164, 2004.
[24]J.A. Nelder and R. Mead, A Simplex Method for Function Minimization, Computer Journal, pp. 308-313, 1965.
[25]S.T. Roweis and L.K. Saul, Non-linear Dimensionality Reduction by Locally Linear Embedding, Science, Vol. 290, pp. 2323-2326, 2000.
[26]C. Tu and J.J. Lien, Direct Combined Model for Facial Feature Point Detection, Face Sketch Synthesis and Occluded Face Recovery, Ph.D. Thesis, National Cheng Kung University, 2010.
[27]M. Turk and A. Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 73-86, 1991.
[28]M. Valstar, B. Martinez, X. Binefa, and M. Pantic, Facial Point Detection using Boosted Regression and Graph Models, Computer Vision and Pattern Recognition, pp. 2729-2736, 2010.
[29]P. Viola and M. Jones, Rapid Object Detection using a Boosted Cascade of Simple Features, Conf. Computer Vision and Pattern Recognition, 2001.
[30]Q. Wang, J. Yang, M. Ren, and Y. Zheng, Driver Fatigue Detection: A Survey, Intelligent Control and Automation, pp. 8587-8591, 2010.
[31]J. Xiao, S. Baker, I. Matthews, and T. Kanade, Real-Time Combined 2D+3D Active Appearance Models, Conf. on Computer Vision and Pattern Recognition, 2004.
[32]J. Xiao, J. Chai, and T. Kanade, A Closed-Form Solution to Non-rigid Shape and Motion Recovery, International Journal of Computer Vision, pp. 233-246, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 胡佳文:〈發揮人力資源,創造競爭優勢〉,《管理雜誌》,第318期,頁72-74,12月2000年。
2. 胡瑕玉、李世琪:〈邁向21世紀職業訓練政策〉,《人力資源發展月刊》,第145期,頁1-6,9月1999年。
3. 邱華君:〈人力資源發展〉,《人力發展》,第75期,頁7-9,4月2000年。
4. 何淑鈴:〈日本多國籍企業全球化人力資源運用之研究--Inpatriate制度和Trainee制度〉,《國立臺中技術學院學報》,第1期,頁147-164,6月2000年。
5. 成之約:〈「派遣勞動」及其對勞資關係與人力資源管理之意涵與因應〉,《空大行政學報》,第10期,頁1-26,6月2000年。
6. 江岷欽:〈組織文化研究途徑之分析〉。《中國行政》,頁36-57,1989年。
7. 江豐富:〈以文憑還是以人力資本取材---臺灣地區實證研究〉,《教育研究資訊》,頁17-35,1995年。
8. 李聲吼:〈跨世紀人力資源發展的遠景〉,《人力發展》,第73期,頁27-32,2月2000年。
9. 李漢雄:〈臺灣地區經濟結構轉型中勞動市場調適之因應策略: 以區域性人力資源發展政策模式為例〉,《臺灣銀行季刊》,第50卷第1期,頁230-252,3月1999年。
10. 李漢雄:〈人力資源發展之策略化程度與組織績效之相關性研究〉,《國立中正大學學報》,第10卷第1期,(社會科學分冊),頁 71-92,12月1999年。
11. 李漢雄: 〈從人力資源發展政策談勞動市場調適之因應策略〉,《人力資源發展月刊》,第126期,頁1-5,2月1998年。
12. 李庚霈:〈有效的人力資源發展管理與再生工程〉,《人力資源發展月刊》,第136期,頁1-8,12月1998年。
13. 王瑞:〈人力資源在企業競爭優勢中所扮演的角色〉,《人力發展》,第77期,頁41-52,6月2000年。
14. 洪文雄:〈從人力資源管理的角度看知識管理〉,《今日合庫》,第26卷第11期,頁82-86,11月2000年。
15. 洪毓澤:〈建立以知識為基礎的人力資源實務〉,《人力發展》,第76期,頁21-25,5月2000年。