|
[1] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its applications to computer technology, New York, McGraw-Hill, 1967.
[2]B.Parhami, “Optimal table-lookup schemes for binary-to-residue and residue-to-binary conversions,” Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1-3, vol. 1, pp. 812 – 816, Nov. 1993.
[3]S.J. Piestrak, “Design of residue generators and multioperand modular adders using carry-save adders,” IEEE Transactions on Computers, vol. 43, pp. 68 – 77, Jan. 1994.
[4]M. Bayoumi, G. Jullien, and W. Miller, “A VLSI implementation of residue adders,” IEEE Transactions on Circuits and Systems”, vol. 34, pp. 284 – 288, Mar 1987.
[5]Y. Wang, “Residue-to-binary converters based on new Chinese remainder theorems,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 197 – 205, Mar. 2000.
[6]H. Henkelmann, A. Drolshagen, H. Bagherinia, H. Ahrens and W. Anheier, “Automated implementation of RNS-to-binary converters,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 137 – 140, May 1998.
[7]B. Cao, C.H. Chang and T. Srikanthan, “An efficient reverse converter for the 4-moduli set {2/sup n/ - 1, 2/sup n/, 2/sup n/ + 1, 2/sup 2n/ + 1} based on the new Chinese remainder theorem,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, pp.1296 – 1303, Oct. 2003.
[8]A. Skavantzos and T. Stouraitis, “Polynomial residue complex signal processing”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, pp. 342 – 344, May 1993.
[9]S. Sunder, F. El-Guibaly, and A. Antoniou, "Area-efficient diminished-1 multiplier for Fermat number-theoretic transform", IEE Proc., pt. G, vol. 140, no. 3, pp. 211-215, June 1993.
[10] L.M. Leibowitz, "A Simplified Binary Arithmetic for the Fermat Number Transform", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-24, pp 356-359, October 1976.
[11]M. Benaissa, A. Pajayakrit, S.S. Dlay, A.G.J. Holt, "VLSI design for diminished-1 multiplication of integers modulo a Fermat number", IEE proceedings, vol. 135, pp.161-164, May 1988.
[12]A. Skavantzos and F.J. Taylor, “On the polynomial residue number system [digital signal processing]”, vol. 39 , Feb. 1991.
[13]V. Paliouras, A. Skavantzos, and T. Stouraitis, “Low power convolvers using the Polynomial Residue Number System,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. II-748 - II-751, May 2002.
[14]V. Paliouras and A. Skavantzos, "Novel forward and inverse PRNS converters of reduced computational complexity", The 36th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1603 – 1607, Nov. 2002.
[15]M. Abdallah and A. Skavantzov, ”The multipolynomial channel polynomial residue arithmetic system,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.46, pp.165-171, Feb. 1999.
[16]A. Skavantzos, Z. Sarkari, and T. Stouraitis, "A complex DSP processor using polynomial encoding," IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1310-1313, May 1989.
[17]Z. Sarkari, A. Skavantzos, and T. Stouraitis, "A reconfigurable systolic array for polynomial multiplication modulo Xn±1", Proceedings of the 21st Southeastern Symposium on System Theory (SSST-89), pp. 460-464, Mar. 1989.
[18]A. Skavantzos, J. Aravena and S. .Gupta, “PRNS approach to fast FIR filtering”, Southeastcon ''90. Proceedings., IEEE , 1-4, Pages:223 – 227, April 1990.
[19]Z.B. Sarkari and A. Skavantzos, “Linear arrays for residue mappers,” Application Specific Array Processors, 1990. Proceedings of the International Conference on , 5-7 , pp. 309 – 316, Sep. 1990.
[20]A. Wrzyszcz and D. Milford, "A new modulo 2a+1 multiplier," IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 614-617, Oct. 1993.
[21]A. Skavantzos and N. Mitash, “Computing large polynomial products using modular arithmetic,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39 , pp. 252 – 254, Apr.1992.
[22]M.G. Parker and M. Benaissa, “GF(pm) multiplication using polynomial residue number systems,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, pp. 718 – 721, Nov. 1995.
[23]D.J. Soudris, M.M. Dasigenis, and A. Thanailakis, 2000, "Designing RNS and QRNS Full Adder Based Converters", Proceedings of IEEE Int. Symposium on Circuits and Systems (ISCAS), Vol. 1, pp. 20-23, May 2000.
[24]R-S. Kao, “A multiplier-free fast transform with efficient VLSI implementation for polynomial RNS processors,” Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on , 14-17, pp.1601 – 1604, Apr. 1991.
[25]A. Skavantzos and N. Mitash, “Implementation issues of 2-dimensional polynomial multipliers for signal processing using residue arithmetic,” IEE Proceedings E Computers and Digital Techniques, vol. 140, pp. 45-53, Jan. 1993.
[26]A.B Premkumar, “A Formal Framework for Conversion from Binary to Residue Numbers,” IEEE Trans. Circuits and Systems II: Cites the 1994 VLSI Signal Processing VII paper, vol. 49, pp.135-144, Feb. 2002.
[27]M.G Parker and M. Benaissa, “Fault-tolerant linear convolution using residue number systems,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 441 – 444, June 1994.
|