[1]廖明夫、Gasch R.、Schubert M.,風力發電技術,西北工業大學出版社, 2009。
[2]Burton T., Sharpe D., Jenkins N. and Bossanyi E., Wind Energy Handbook, Wiley, 2011.
[3]江俊明,考慮流固耦合效應之水平軸風力發電機氣動力特性數值研究,台灣科技大學機械系碩士論文,2013。[4]Jonkman J.M., Butterfield S., Musial W., and Scott G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Labortory, NREL/TP-500-38060, 2009.
[5]Jonkman J.M., Marshall L.B., “FAST user’s guide,” Technical report NREL/EL-500-38230. National Renewable Energy Laboratory, 2005.
[6]Pedersen A.S., and Steiniche C.S., “Safe Operation and Emergency Shutdown of Wind Turbines,” Aalborg University, 2012.
[7]李文傑,運轉狀態下風力發電機之氣動力負荷數值研究,台灣科技大學機械系碩士論文,2013。[8]郭真祥、蔡國忠、趙修武、楊淳宇、李仲凱、李岱柏、林宇,「NREL 5MW風機於台灣彰濱外海地區極限風速下之氣動力負荷數值模擬研究」,2013年台灣風能學術研討會,基隆,2013。
[9]郭真祥、趙修武、楊淳宇、林宇、李岱柏、李仲凱,「水平軸離岸風機緊急停機過程氣動力特性分析」,第二十六屆中國造船暨輪機工程研討會暨國科會成果發表會,基隆,2014。
[10]林宇,水平軸離岸風機雙向流固耦合氣動力特性分析,台灣科技大學機械系碩士論文,2014。[11]Bazilevs Y., Hsu M.C., Kiendl J., Wüchner R., and Bletzinger K. U., “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades,” International Journal For Numerical Methods Fluids, vol. 65, pp.236-253, 2011.
[12]Hsu M.C., Bazilevs Y., “Fluid–structure interaction modeling of wind turbines: simulating the full machine,” Comput Mech, vol. 50, pp.821-833, 2012.
[13]“Fully Coupled Fluid-Structure Interaction Analysis of Wind Turbine Rotor Blades,” Abaqus Technology Brief, 2012.
[14]STAR-CCM+ Ver. 9.06 User`s Guide, 2014.
[15]Abaqus 6.14 User`s Manual, 2014.
[16]Tezduyar T., Aliabadi S., Behr M., Johnson A., Kalro V., and Litke M., “Flow simulation and high performance computing,” Comput Mech, vol. 18, pp.397-412, 1996.
[17]Bazilevs Y., Hsu M.C., Kiendl J., Wüchner R., and Bletzinger K.U., “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics,” International Journal For Numerical Methods Fluids, vol. 65, pp.207-235, 2011.
[18]Lindenburg C., “Aeroelastic Modelling of the LMH64-5 Blade,” DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports, 2002.
[19]Kooijman H.J.T., Lindenburg, C., Winkelaar D., and van der Hooft E.L., “DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS,” DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports, 2003.
[20]Demirdžić I., and Perić M., “Space conservation law in finite volume calculations of fluid flow,” International Journal for Numerical Methods in Fluids, vol. 8, issue 9, pp.1037-1050, 1988
[21]Robert E., Thierry G. and Herbin R., “Finite Volume Method,” Handbooks of Numerical Analysis, vol.7, pp.713-1020, 2006.
[22]Wilcox, D.C., Turbulence Modeling for CFD, 2nd edition, DCW Industries, Inc. 1998.
[23]Menter F.R., “Two-equation eddy-viscosity turbulence modeling for engineering applications,” AIAA Journal, vol. 32, pp.1598-1605, 1994.
[24]Wanger S., BareiB R., and Guidati G., Wind Turbine Noise, 1996.
[25]Ferziger, J.H. and Perić M., Computational Methods for Fluid Dynamics, 3rd rev. ed., Springer-Verlag, Berlin, 2002.
[26]Patankar, S.V. and Spalding, D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer, vol. 15, pp.1787-1806, 1972.
[27]Hibbeler R.C., Mechanics of Materials, 8th ed., Prentice Hall, 2012.
[28]Richardson L.F., “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam,” Philosophical Transactions of the Royal Society of London. Series A, vol. 210, pp.307-357, 1910.
[29]Politis E.S. and Chaviaropoulos P.K., Micrositing and classification of wind turbines in complex terrain, Wind Energy Section Centre of Renewable Energy Sources, 2008.