跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施珺萱
研究生(外文):Chun-Hsuan Shih
論文名稱:利用 SW620 細胞株探討傳統中草藥天然化合物抑制大腸直腸癌轉移能力之活性
論文名稱(外文):The Inhibitory Effect of Nature Compounds fromTraditional Chinese Herbal Medicine on Metastasis of The Inhibitory Effect of Nature Compounds fromThe Inhibitory Effect of Nature Compounds from Traditional Chinese Herbal Medicine on Metastasis of Colorectal Cancer Using Cell Line SW620
指導教授:蔣丙煌蔣丙煌引用關係
指導教授(外文):Been-Huang Chiang
口試委員:何其儻鍾景光郭明良
口試委員(外文):Chi-Tang HoJing-Gung ChungMin-Liang, Kuo
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:159
中文關鍵詞:大腸直腸癌中草藥轉移移行入侵
外文關鍵詞:colorectal cancertraditional Chinese herbal medicinesmetastasismigrationinvasion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌是目前全世界主要造成男性與女性因惡性腫瘤而死亡的癌症,根據行政院衛生署最新統計,大腸直腸癌之罹患率在台灣目前已攀升至第一位。然而,絕大多數癌症患者 (90%) 並非死於腫瘤本身,而是死於癌症轉移 (metastasis)。目前癌症治療方式以手術和化療為主,但仍有副作用和癒後復發等問題;隨著化學藥物療法受到限制,醫學轉而求助替代補充療法或傳統醫學治療,因此中草藥研發備受關注。
本研究即以一具有高度轉移特性之大腸直腸癌細胞株 SW620 作為體外篩選藥物之平台,並且回顧文獻選出 13 種具有抑制癌細胞轉移潛力之中草藥天然化合物,包含穿心蓮內酯 (Andrographolide)、吳茱萸鹼 (Evodiamine)、薑黃 (Curcumin)、泛黃芩素 (Wogonin)、黃芩素 (Baicalein)、黃芩苷 (Baicalin)、白楊素 (Chrysin)、雷公藤內酯 (Triptolide) 、雷公藤紅素 (Celastrol)、厚朴酚 (Magnolol)、異厚朴酚 (Honokiol)、薑辣素 (6-gingerol) 和薑烯酚 (6-shogaol),藉此比較這些天然化合物抑制腫瘤轉移能力,並探討可能作用機制。
本實驗共可分作三階段。階段一,以 MTT assay 篩選出具有抑制癌細胞增生能力之天然化合物。在 13 種天然化合物中,有 7 種在 500 μM 以下可有效抑制 SW620 生長,其中以 curcumin (Cur) 和 honokiol (Hon) 效果最佳 (IC50 皆為 30 μM),因此以 Cur 和 Hon 進入第二階段試驗。
階段二,分別以傷口癒合試驗 (Wound healing assay) 以及細胞侵入性試驗 (Boyden chamber assay) 評估天然化合物抑制腫瘤細胞爬行 (migration) 和入侵 (invasion) 能力。Cur 和 Hon 皆可有效抑制 SW620 爬行,並且呈現劑量效應;在入侵能力試驗部分,Cur 之抑制率由濃度低至高 (5, 10, 30 μM) 分別為 65%, 69% 和 93%,Hon 則為 40%, 70% 和 69%,以上結果顯示,Cur 和 Hon 皆具有效抑制癌細胞轉移之特性。
階段三,以西方點墨法 (Western blotting) 探討天然化合物抑制轉移之作用機制。實驗結果顯示,Cur 和 Hon 無法影響 MMP9 以及 MMP2 之蛋白質表現;但皆可以顯著降低活化態 (active form) 以及未活化 (pro-form) 之 MMP7 蛋白表現量,並且呈現劑量效應。另外,Cur 和 Hon 可以維持細胞膜上 E-cadherin,穩定細胞間黏著力,並抑制與 E-cadherin 形成 adheren junction 的 β-catenin 鬆脫,避免 β-catenin 轉入細胞核帶動下游癌化與轉移相關基因之表現,進而達到抑制細胞轉移之作用。


Colorectal cancer (CRC) is the major cancer which causes people dead worldwide. In Taiwan, according to the Bureau of Health Promotion, Department of Health, CRC has reached the first place in cancer incidence. Tumor cell metastasis is the most malignant feature during cancer progression and accounts for the major factor (90%) of mortality.
Current cancer treatment includes surgery and chemotherapy, but there are still side effects and recurrence problems. Therefore, nowadays medicine profession pays more attention to the research and development of traditional Chinese herbal medicines (TCM). As a Consequence, our aim was to find the potential TCM to decrease the metastastic rates of colorectal cancer.
In our study, we used the colorectal cancer cell line, SW620, which has high metastasis ability for in vitro assays. We also chose 13 pure compounds, which have the potential for anti-metastasis, from TCM based on the literatures to investigate the anti-metastastic ability of those pure compounds and the possible mechanism. The pure compounds include Andrographolide, Evodiamine, Curcumin, Wogonin, Baicalein, Baicalin, Chrysin, Triptolide, Celastrol, Magnolol, Honokiol, 6-gingerol and 6-shogaol.
There are three phases of our experiments. In phase one, we tested the ability of anti-proliferation of those pure compounds by MTT assay. Then we selected curcumin (Cur) and honokiol (Hon), which are more effective than the others, to conduct bioactivity test.
In the second phase, we used would-healing assay and Boyden chamber assay to analyze the potential of anti-migration and anti-invasion of Cur and Hon. Results showed that both of Cur and Hon had the inhibitory ability of anti-migration on SW620 in a dose-dependent manner. Besides, they also effectively reduced cell invasion. The inhibition rates of the treatments of different concentration of Cur (5, 10, 30μM) were 65%, 69% and 93%. For Hon, they were 40%, 70% and 69%. The data demonstrated that both of Cur and Hon could suppress the metastasis of SW620.
Finally in phase three, we investigated the possible mechanism of the anti-migration effect of Cur and Hon. Using western blotting assay, we found that although Cur and Hon could not decrease MMP2 and MMP9 expression, they could significantly inhibit active and pro-form MMP7 protein expression with dose-dependency. Moreover, both of Cur and Hon could augment the expression and stability of E-cadherin proteins on the cell membrane to prevent the disruption of cell contacts. They could also avoid β-catenin to translocate into nuclear binding downstream targets such as MMPs (especially MMP7) thus downregulated cell metastasis.
In conclusion, our findings suggest that Cur and Hon could maintain the expression of E-cadherin on cell membrane, avoid β-catenin translocation and then suppress the translation of MMP-7 protein, thus inhibit the metastasis of human colorectal cancer cell line SW620.


謝誌 II
摘要 i
Abstract iii

第一章、文獻回顧 1
第一節、大腸直腸癌 (colorectal cancer, CRC) 1
(一) 罹患率及現況 1
(二) 分類與成因 1
1-2-1. 遺傳性息肉症 (familial polyposis coli, FAP) 2
1-2-1-1. 腺瘤 (adenoma) 2
1-2-1-2. 布茲傑格症候群 (Peutz-Jeghers syndrome, PJS) 2
1-2-2. 遺傳性非息肉症大腸直腸癌 (HNPCC) 2
1-2-3. 非遺傳性大腸直腸癌 (sporadic colorectal cancer) 3
1-2-3-1. 增生性息肉 (Hyperplastic polyp or Metaplastic polyp) 3
1-2-3-2. 腺瘤 (adenoma) 3
1-2-3-3. 非遺傳性缺陷瘤 (hematoma) 4
1-2-3-4. 發炎性息肉或偽息肉 (Inflammatory bowel disease, IBD or pseudo polyp) 4
(三) 分級與發展 5
1-3-1. Dukes’ system 5
1-3-2. TNM staging system 5
(四) 治療 7
1-4-1. 血管新生抑制劑 7
1-4-1-1. Avastin (Bevacizumab) 8
1-4-2. 表皮生長因子抑制劑 10
1-4-2-1. Cetuximab 10
第二節、癌細胞轉移 (metastasis) 11
(一) 重要性 11
(二) 機制 13
2-2-1. 步驟 13
2-2-2. 類型 13
2-2-2-1. 單一細胞侵犯型 (single cell invasion) 13
2-2-2-2. 集體細胞侵犯型 (collective cell invasion) 14
(三) 細胞連結機制 15
2-3-1. 細胞與細胞之連結 (cell–cell junctions) 15
2-3-1-1. 穿膜醣蛋白 (E-cadherin,uvomorulin or L-CAM) 16
2-3-1-2. 穿膜醣蛋白之胞外區域 (extracellular domain of E-cadherin (ED)) 16
2-3-1-3. 穿膜醣蛋白之穿膜區域(transmembrane domain of E-cadherin (TD)) 17
2-3-1-4. 穿膜醣蛋白在細胞質之區域(cytoplasmic domain of E-cadherin (CD)) 17
2-3-1-5. E-cadherin/β-catenin complex (E-cad/β-cat) 17
2-3-2. 細胞與基質之連結 (Cell-matrix junctions) 23
(四) 金屬基質蛋白酶 (Matrix metalloproteinases) 24
2-4-1. 簡介 24
2-4-2. 結構與分類 24
2-4-3. MMPs 與轉移關係 30
2-4-3-1. MMP2 的表現 32
2-4-3-2. MMP9 的表現 32
2-4-3-3. MMP7 的表現 32
2-4-4. MMPs之抑制藥物 34
第三節、具抑制大腸直腸癌轉移潛力之中草藥 35
(一) 穿心蓮 (Andrographis paniculata) 35
3-1-1. 穿心蓮內酯 (Andrographolide, Andro) 35
(二)吳茱萸 (Evodia Rutaecarpa) 35
3-2-1. 吳茱萸鹼 (Evodiamine) 36
(三) 薑黃 (Curcuma longa ) 36
3-3-1. 薑黃素 (Curcumin) 36
(四) 厚朴 (Magnolia officinalis Rehd.et Wils.) 37
3-4-1. 厚朴酚 (Magonolol) 與異厚朴酚 (Honokiol) 38
(五) 黃芩 (Scutellariae radix) 38
3-5-1. 泛黃芩素 (Wogonin) 38
3-5-2. 黃芩素 (Baicalein) 39
3-5-3. 黃芩苷 (Baicalin) 39
3-5-4. 白楊素 (Crysin) 39
(六) 雷公藤 (Tripterygium wilfordii) 40
3-6-1. 雷公藤紅素 (Celastrol) 40
3-6-2. 雷公藤內酯 (Triptolide) 40
(七) 薑 (Zingiber officinale) 40
3-7-1. 薑辣素 (6-gingerol) 與薑烯酚 (6-shogaol) 41

第二章、實驗目的與設計 46
第一節、實驗目的 46
第二節、實驗設計 47
(一) 實驗流程 48
(二) 實驗架構 49
2-2-2. Part 2: Bioactivity test 50

第三章、實驗材料與儀器 52
第一節、實驗材料 52
(一) 細胞來源與型態 52
(二) 藥品試劑 52
第二節、實驗儀器 55
第四章、實驗方法 56
第一節、樣品配置 56
第二節、細胞培養 56
第三節、細胞存活率 (MTT assy) 58
第四節、腫瘤細胞爬行能力試驗 (Wound-healing assay) 60
第五節、腫瘤細胞入侵能力試驗 (Invasion assay) 61
第六節、蛋白質萃取與定量 (Protein extraction) 64
第七節、SDS-PAGE 電泳分析 66
第八節、西方點墨法 (western blotting) 69

第五章、結果與討論 71
第一節、MTT test 71
第二節、Bioactivity study 76
(一) Curcumin 抑制 SW620 細胞之轉移能力 77
2-1-1. 腫瘤細胞爬行能力試驗結果 (migration assay) 77
2-1-2. 腫瘤細胞入侵能力試驗結果 (Invasion assay) 80
(二) Honokiol 抑制 SW620 細胞之轉移能力 82
2-2-1. 腫瘤細胞爬行能力試驗結果 (migration assay) 82
2-2-2. 腫瘤細胞入侵能力試驗結果 (Invasion assay) 85
(三) Bioactivity study 小結 87
第三節、Molecular mechanism 88
(一) Curcumin 對於 SW620 細胞之目標蛋白質表現之影響 88
3-1-1. Cell-matrix:MMP2, MMP9 以及 MMP7 88
3-1-2. Cell-cell:E-cadherin 以及 β-catnin 蛋白表現量 92
3-1-3. Curcumin 抑制轉移作用機制之小結 97
3-2-1. Cell-matrix:MMP2, MMP9 以及 MMP7 蛋白表現量 99
3-2-2. Cell-cell:E-cadherin 以及β-catnin 蛋白表現量 105
3-2-3. Honokiol 抑制轉移作用機制之小結 109
(三) Molecular mechanism 小結 110
3-3-1. 細胞與基質之連結 (Cell-matrix junctions) 110
3-3-2. 細胞與細胞之連結 (Cell-cell junctions) 111

第六章、結論 115
第七章、參考文獻 117
第八章、附錄 129


行政院衛生署, 2012
行政院衛生署, 2013
以薑黃素做為口腔癌化學預防與治療藥物之潛力及其作用機轉之研究
郭彥彬,2004

MEROPS http://merops.sanger.ac.uk/index.shtml
Adachi, Y.; Yamamoto, H.; Itoh, F.; Hinoda, Y.; Okada, Y.; Imai, K. Contributionof matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut. 1999, 45,252–258.
Aberle, H.; Butz, S.; Stappert, J.; Weissig, H.; Kemler, R.; Hoschuetzky, H. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 1994, 107, 3655-3663.
Aberle, H.; Bierkamp, C.; Torchard, D.; Serova, O.; Wagner, T.; Natt, E.; Wirsching, J.; Heidkamper, C.; Montagna, M.; Lynch, H. T. The human plakoglobin gene localizes on chromosome 17q21 and is subjected to loss of heterozygosity in breast and ovarian cancers. Proceedings of the National Academy of Sciences 1995, 92, 6384-6388.
Aberle, H.; Schwartz, H.; Kemler, R. Cadherin‐catenin complex: Protein interactions and their implications for cadherin function. J. Cell. Biochem. 1996, 61, 514-523.
Adachi, Y.; Yamamoto, H.; Itoh, F.; Hinoda, Y.; Okada, Y.; Imai, K. Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 1999, 45, 252-258.
Adams, V. R. Evolving role of antineoplastic agents in colorectal cancer. Am. J. Health. Syst. Pharm. 2006, 63, S4-S11.
Aggarwal, B. B.; Kumar, A.; Bharti, A. C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23, 363-398.
Aggarwal, B. B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R. A.; Bueso-Ramos, C. E.; Price, J. E. Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer. Res. 2005, 11, 7490-7498.
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Cell junctions, cell adhesion, and the extracellular matrix. 2002.
Baselga, J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002, 7, 2-8.
Batlle, E.; Sancho, E.; Franci, C.; Dominguez, D.; Monfar, M.; Baulida, J.; de Herreros, A. G. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000, 2, 84-89.
Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2012, 1825, 29-36.
Beavon, I. The E-cadherin–catenin complex in tumour metastasis: structure, function and regulation. Eur. J. Cancer 2000, 36, 1607-1620.
Benbow, U.; Brinckerhoff, C. E. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol. 1997, 15, 519-526.
Bergers, G.; Brekken, R.; McMahon, G.; Vu, T. H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000, 2, 737.
Bjorklund, M.; Koivunen, E. Gelatinase-mediated migration and invasion of cancer cells. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2005, 1755, 37-69.
Boller, K.; Vestweber, D.; Kemler, R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. The Journal of cell biology 1985, 100, 327-332.
Bondi, J.; Bukholm, G.; Nesland, J. M.; Bakka, A.; Bukholm, I. R. An increase in the number of adhesion proteins with altered expression is associated with an increased risk of cancer death for colon carcinoma patients. Int. J. Colorectal Dis. 2006, 21, 231-237.
Bourboulia, D.; Stetler-Stevenson, W. G. In Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion, Semin. Cancer Biol., 2010; Elsevier: 2010; pp 161-168.
Bourguignon, L. Y.; Gunja-Smith, Z.; Iida, N.; Zhu, H.; Young, L.; Muller, W. J.; Cardiff, R. CD44v~ 3~,~ 8~-~ 1~ 0 Is Involved in Cytoskeleton-Mediated Tumor Cell Migration and Matrix Metalloproteinase (MMP-9) Association in Metastatic Breast Cancer Cells. J. Cell. Physiol. 1998, 176, 206-215.
Boyden, S. V. Cellular discrimination between indigenous and foreign matter. JTBio 1962, 3, 123-131.
Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American journal of pathology 1999, 155, 1033-1038.
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. AnBio 1976, 72, 248-254.
Brinckerhoff, C. E.; Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature reviews Molecular cell biology 2002, 3, 207-214.
Brooks, P. C.; Stromblad, S.; Sanders, L. C.; von Schalscha, T. L.; Aimes, R. T.; Stetler-Stevenson, W. G.; Quigley, J. P.; Cheresh, D. A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 1996, 85, 683-693.
Brooks, S. A.; Lomax-Browne, H. J.; Carter, T. M.; Kinch, C. E.; Hall, D. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010, 112, 3-25.
Bukholm, I.; Nesland, J.; Karesen, R.; Jacobsen, U.; Borresen‐Dale, A. L. E‐cadherin and α‐, β‐, and γ‐catenin protein expression in relation to metastasis in human breast carcinoma. The Journal of pathology 1998, 185, 262-266.
Cano, A.; Perez-Moreno, M. A.; Rodrigo, I.; Locascio, A.; Blanco, M. J.; del Barrio, M. G.; Portillo, F.; Nieto, M. A. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000, 2, 76-83.
Chan, A. O. O. E-cadherin in gastric cancer. World Journal of Gastroenterology 2006, 12, 199.
Chen, H.; Zhang, Z.; Zhang, Y.; Zhou, D. Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res. 1999, 19, 3675.
Cheung, H.; Cheung, C.; Kong, C. Determination of bioactive diterpenoids from< i> Andrographis paniculata by micellar electrokinetic chromatography. J. Chromatogr. 2001, 930, 171-176.
Chiou, W.-F.; Sung, Y.-J.; Liao, J.-F.; Shum, A. Y.-C.; Chen, C.-F. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. J. Nat. Prod. 1997, 60, 708-711.
Christofori, G.; Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem. Sci. 1999, 24, 73-76.
Christofori, G. New signals from the invasive front. Nature 2006, 441, 444-450.
Cianfrocca, M.; Lee, S.; Von Roenn, J.; Rudek, M. A.; Dezube, B. J.; Krown, S. E.; Sparano, J. A. Pilot study evaluating the interaction between paclitaxel and protease inhibitors in patients with human immunodeficiency virus-associated Kaposi’s sarcoma: an Eastern Cooperative Oncology Group (ECOG) and AIDS Malignancy Consortium (AMC) trial. Cancer Chemother. Pharmacol. 2011, 68, 827-833.
Cohen, A. M.; Tremiterra, S.; Candela, F.; Thaler, H. T.; Sigurdson, E. R. Prognosis of node‐positive colon cancer. Cancer 1991, 67, 1859-1861.
Coussens, L. M.; Tinkle, C. L.; Hanahan, D.; Werb, Z. MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell 2000, 103, 481-490.
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. New Engl. J. Med. 2004, 351, 337-345.
Debruyne, D.; Oliveira, M. J.; Bracke, M.; Mareel, M.; Leroy, A. Colon cancer cells: pro-invasive signalling. The international journal of biochemistry & cell biology 2006, 38, 1231-1236.
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271-277.
Dorman, G.; Cseh, S.; Hajdu, I.; Barna, L.; Konya, D.; Kupai, K.; Kovacs, L.; Ferdinandy, P. Matrix Metalloproteinase Inhibitors. Drugs 2010, 70, 949-964.
Dorudi, S.; Sheffield, J.; Poulsom, R.; Northover, J.; Hart, I. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study. The American journal of pathology 1993, 142, 981.
Du, G.; Han, G.; Zhang, S.; Lin, H.; Wu, X.; Wang, M.; Ji, L.; Lu, L.; Yu, L.; Liang, W. Baicalin suppresses lung carcinoma and lung metastasis by SOD mimic and HIF-1α inhibition. Eur. J. Pharmacol. 2010, 630, 121-130.
Fidler, I. J. The pathogenesis of cancer metastasis: the''seed and soil''hypothesis revisited. Nature Reviews Cancer 2003, 3, 453-458.
Fletcher, D. A.; Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485-492.
Fridman, R.; Toth, M.; Chvyrkova, I.; Meroueh, S. O.; Mobashery, S. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev. 2003, 22, 153-166.
Fried, L. E.; Arbiser, J. L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & redox signaling 2009, 11, 1139-1148.
Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 2004, 16, 14-23.
Funayama, N.; Fagotto, F.; McCrea, P.; Gumbiner, B. M. Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. The Journal of cell biology 1995, 128, 959-968.
Gorlich, D.; Prehn, S.; Laskey, R. A.; Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 1994, 79, 767-778.
Gebert, H.; Jagelman, D.; McGannon, E. Familial polyposis coli. Am. Fam. Physician 1986, 33, 127.
Gialeli, C.; Theocharis, A. D.; Karamanos, N. K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011, 278, 16-27.
Giannelli, G.; Falk-Marzillier, J.; Schiraldi, O.; Stetler-Stevenson, W. G.; Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Sci 1997, 277, 225-228.
Han, S.-S.; Keum, Y.-S.; Seo, H.-J.; Surh, Y.-J. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 2002, 35, 337-342.
Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674.
Hangai, M.; Kitaya, N.; Xu, J.; Chan, C. K.; Kim, J. J.; Werb, Z.; Ryan, S. J.; Brooks, P. C. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. The American journal of pathology 2002, 161, 1429-1437.
Hewitt, R. E.; McMarlin, A.; Kleiner, D.; Wersto, R.; Martin, P.; Tsoskas, M.; Stamp, G. W.; Stetler‐Stevenson, W. G. Validation of a model of colon cancer progression. The Journal of pathology 2000, 192, 446-454.
Hinck, L.; Nathke, I. S.; Papkoff, J.; Nelson, W. J. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. The Journal of cell biology 1994, 125, 1327-1340.
Ho, B.-Y.; Wu, Y.-M.; Chang, K.-J.; Pan, T.-M. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci 2011, 7, 869.
Hornebeck, W.; Emonard, H.; Monboisse, J.-C.; Bellon, G. In Matrix-directed regulation of pericellular proteolysis and tumor progression, Semin. Cancer Biol., 2002; Elsevier: 2002; pp 231-241.
Hsia, S.-M.; Su, J.-C.; Wang, K.-L.; Wang, P. S. Effects of Evodiamine on the Expression and Secretion of Vascular Endothelial Growth Factor in Human Breast Cancer Cells. 2009.
Hugh, T.; Dillon, S.; Taylor, B.; Pignatelli, M.; Poston, G.; Kinsella, A. Cadherin–catenin expression in primary colorectal cancer: a survival analysis. Br. J. Cancer 1999, 80, 1046.
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl. J. Med. 2004, 350, 2335-2342.
Huss, S.; Nehles, J.; Binot, E.; Wardelmann, E.; Mittler, J.; Kleine, M. A.; Kunstlinger, H.; Hartmann, W.; Hohenberger, P.; Merkelbach‐Bruse, S. β‐Catenin (CTNNB1) mutations and clinicopathological features of mesenteric desmoid‐type fibromatosis. Histopathology 2013, 62, 294-304.
Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. Antitumor effects of< i> Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 2000, 55, 951-955.
IKEMOTO, S.; SUGIMURA, K.; KURATUKURI, K.; NAKATANI, T. Antitumor effects of lipoxygenase inhibitors on murine bladder cancer cell line (MBT-2). Anticancer Res. 2004, 24, 733-736.
Imamoto, N.; Shimamoto, T.; Takao, T.; Tachibana, T.; Kose, S.; Matsubae, M.; Sekimoto, T.; Shimonishi, Y.; Yoneda, Y. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO 1995, 14, 3617.
Jiang, J.; Hu, C. Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules 2009, 14, 1852-1859.
Jodele, S.; Blavier, L.; Yoon, J. M.; DeClerck, Y. A. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 2006, 25, 35-43.
Johnson, S. M.; Wang, X.; Evers, B. M. Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. J. Surg. Res. 2011, 168, 197-205.
Kang, Y.-J.; Park, H. J.; Chung, H.-J.; Min, H.-Y.; Park, E. J.; Lee, M. A.; Shin, Y.; Lee, S. K. Wnt/β-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol. Pharmacol. 2012, 82, 168-177.
Karki, R.; Jeon, E.-R.; Kim, D.-W. Magnoliae Cortex inhibits intimal thickening of carotid artery through modulation of proliferation and migration of vascular smooth muscle cells. Food Chem. Toxicol. 2012, 50, 634-640.
Karnovsky, A.; Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proceedings of the National Academy of Sciences 1995, 92, 4522-4526.
Kawanishi, J.; Kato, J.; Sasaki, K.; Fujii, S.; Watanabe, N.; Niitsu, Y. Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39. Mol. Cell. Biol. 1995, 15, 1175-1181.
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010, 141, 52-67.
Kimura, Y.; Sumiyoshi, M. Anti-tumor and anti-metastatic actions of wogonin isolated from< i> Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine 2012.
Kirimlioglu, H.; Kirimlioglu, V.; Yilmaz, S.; Sagir, V.; Coban, S.; Turkmen, E.; Hilmioglu, F. Role of matrix metalloproteinase-7 in colorectal adenomas. Dig. Dis. Sci. 2006, 51, 2068-2072.
Kleinman, H. K.; Martin, G. R. In Matrigel: basement membrane matrix with biological activity, Semin. Cancer Biol., 2005; Elsevier: 2005; pp 378-386.
Kobayashi, Y.; Nakano, Y.; Kizaki, M.; Hoshikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med. 2001, 67, 628-633.
Koukourakis, M. I.; Giatromanolaki, A.; Sivridis, E.; Gatter, K. C.; Harris, A. L. Inclusion of vasculature-related variables in the Dukes staging system of colon cancer. Clin. Cancer. Res. 2005, 11, 8653-8660.
Kuang, L.; Wang, L.; Wang, Q.; Zhao, Q.; Du, B.; Li, D.; Luo, J.; Liu, M.; Hou, A.; Qian, M. Cudratricusxanthone G inhibits human colorectal carcinoma cell invasion by MMP-2 down-regulation through suppressing activator protein-1 activity. Biochem. Pharmacol. 2011, 81, 1192-1200.
Kubens, B. S.; Zanker, K. S. Differences in the migration capacity of primary human colon carcinoma cells (SW480) and their lymph node metastatic derivatives (SW620). Cancer Lett. 1998, 131, 55-64.
Kuo, M.-L.; Huang, T.-S.; Lin, J.-K. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1996, 1317, 95-100.
Lopez-Otin, C.; Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nature Reviews Cancer 2007, 7, 800-808.
Larsen, M.; Tremblay, M. L.; Yamada, K. M. Phosphatases in cell–matrix adhesion and migration. Nature reviews Molecular cell biology 2003, 4, 700-711.
Lee, H. S.; Seo, E. Y.; Kang, N. E.; Kim, W. K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. The Journal of nutritional biochemistry 2008a, 19, 313-319.
Lee, J. M.; Dedhar, S.; Kalluri, R.; Thompson, E. W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology 2006, 172, 973-981.
Lee, S. H.; Son, J.-K.; Jeong, B. S.; Jeong, T.-C.; Chang, H. W.; Lee, E.-S.; Jahng, Y. Progress in the Studies on Rutaecarpine. Molecules 2008b, 13, 272-300.
Levy, A. T.; Cioce, V.; Sobel, M. E.; Garbisa, S.; Grigioni, W. F.; Liotta, L. A.; Stetler-Stevenson, W. G. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res. 1991, 51, 439-444.
Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Duan, J.-A. Selective matrix metalloproteinase inhibitors for cancer. Curr. Med. Chem. 2009, 16, 3805-3827.
Lin, C.-B.; Lin, C.-C.; Tsay, G. J. 6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest. Evidence-Based Complementary and Alternative Medicine 2012, 2012.
Lin, C.-M.; Shyu, K.-G.; Wang, B.-W.; Chang, H.; Chen, Y.-H.; Chiu, J.-H. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in ovo approach. J. Agric. Food Chem. 2010, 58, 7082-7087.
Lin, M.-C.; Wang, F.-Y.; Kuo, Y.-H.; Tang, F.-Y. Cancer chemopreventive effects of lycopene: suppression of MMP-7 expression and cell invasion in human colon cancer cells. J. Agric. Food Chem. 2011, 59, 11304-11318.
Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M. J. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of cell biology 1997, 139, 1861-1872.
Lynch, C. C.; Matrisian, L. M. Matrix metalloproteinases in tumor–host cell communication. Differentiation 2002, 70, 561-573.
Lynch, H. T.; Smyrk, T.; Watson, P.; Lanspa, S.; Lynch, J.; Lynch, P.; Cavalieri, R.; Boland, C. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 1993, 104, 1535.
Lynch, H. T.; Lynch, J. F. In Hereditary nonpolyposis colorectal cancer, Semin. Surg. Oncol., 2000; Wiley Online Library: 2000; pp 305-313.
Manes, S.; Llorente, M.; Lacalle, R. A.; Gomez-Mouton, C.; Kremer, L.; Mira, E.; Martı́nez-A, C. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 1999, 274, 6935-6945.
Madhavan, M.; Srinivas, P.; Abraham, E.; Ahmed, I.; Mathew, A.; Vijayalekshmi, N.; Balaram, P. Cadherins as predictive markers of nodal metastasis in breast cancer. Mod. Pathol. 2001, 14, 423-427.
Mani, S. A.; Yang, J.; Brooks, M.; Schwaninger, G.; Zhou, A.; Miura, N.; Kutok, J. L.; Hartwell, K.; Richardson, A. L.; Weinberg, R. A. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proceedings of the National Academy of Sciences 2007, 104, 10069-10074.
Matsuda, T.; Kuroyanagi, M.; Sugiyama, S.; Umehara, K.; Ueno, A.; Nishi, K. Cell differentiation‐inducing diterpenes from Andrographis paniculata Nees. ChemInform 1995, 26, no-no.
McCarthy, K.; Maguire, T.; McGreal, G.; McDermott, E.; O''Higgins, N.; Duffy, M. J. High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int. J. Cancer 1999, 84, 44-48.
McCormack, P. L.; Keam, S. J. Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs 2008, 68, 487-506.
Mori, M.; Barnard, G. F.; Mimori, K.; Ueo, H.; Akiyoshi, T.; Sugimachi, K. Overexpression of matrix metalloproteinase‐7 mRNA in human colon carcinomas. Cancer 1995, 75, 1516-1519.
Morson, B. C. Some peculiarities in the histology of intestinal polyps. Dis. Colon Rectum 1962, 5, 337-344.
Motl, S. Bevacizumab in combination chemotherapy for colorectal and other cancers. Am. J. Health. Syst. Pharm. 2005, 62, 1021-1032.
Muller, D.; Quantin, B.; Gesnel, M.; Millon-Collard, R.; Abecassis, J.; Breathnach, R. The collagenase gene family in humans consists of at least four members. Biochem. J. 1988, 253, 187.
MURRAY, D.; MORRIN, M.; MCDONNELL, S. Increased invasion and expression of MMP-9 in human colorectal cell lines by a CD44-dependent mechanism. Anticancer Res. 2004, 24, 489-494.
Nathke, I. S.; Hinck, L.; Swedlow, J. R.; Papkoff, J.; Nelson, W. J. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. The Journal of cell biology 1994, 125, 1341-1352.
Nabeshima, K.; Inoue, T.; Shimao, Y.; Okada, Y.; Itoh, Y.; Seiki, M.; Koono, M. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 2000, 60, 3364-3369.
Nagalingam, A.; Arbiser, J. L.; Bonner, M. Y.; Saxena, N. K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Research 2012, 14, R35.
Nagase, H. Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res. 1998, 8, 179-186.
Nakahata, N.; Tsuchiya, C.; Nakatani, K.; Ohizumi, Y.; Ohkubo, S. Baicalein inhibits Raf-1-mediated phosphorylation of MEK-1 in C6 rat glioma cells. Eur. J. Pharmacol. 2003, 461, 1-7.
Newell, K. J.; Witty, J. P.; Rodgers, W. H.; Matrisian, L. M. Expression and localization of matrix‐degrading metalloproteinases during colorectal tumorigenesis. Mol. Carcinog. 1994, 10, 199-206.
Nie, D.; Krishnamoorthy, S.; Jin, R.; Tang, K.; Chen, Y.; Qiao, Y.; Zacharek, A.; Guo, Y.; Milanini, J.; Pages, G. Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J. Biol. Chem. 2006, 281, 18601-18609.
Noe, V.; Fingleton, B.; Jacobs, K.; Crawford, H. C.; Vermeulen, S.; Steelant, W.; Bruyneel, E.; Matrisian, L. M.; Mareel, M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 2001, 114, 111-118.
NoE, V.; Bruyneel, E.; Mareel, M.; Bracke, M., The E-cadherin/catenin complex in invasion: the role of ectodomain shedding. In Cancer Metastasis, Molecular and Cellular Mechanisms and Clinical Intervention, Springer: 2004; pp 73-119.
Ogasawara, M.; Matsubara, T.; Suzuki, H. Screening of natural compounds for inhibitory activity on colon cancer cell migration. Biol. Pharm. Bull. 2001, 24, 720-723.
Ogasawara, M.; Matsunaga, T.; Takahashi, S.; Saiki, I.; Suzuki, H. Anti-invasive and metastatic activities of evodiamine. Biol. Pharm. Bull. 2002, 25, 1491-1493.
Onder, T. T.; Gupta, P. B.; Mani, S. A.; Yang, J.; Lander, E. S.; Weinberg, R. A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008, 68, 3645-3654.
Oshima, T.; Kunisaki, C.; Yoshihara, K.; Yamada, R.; Yamamoto, N.; Sato, T.; Makino, H.; Yamagishi, S.; Nagano, Y.; Fujii, S. Clinicopathological significance of the gene expression of matrix metalloproteinases and reversion-inducing cysteine-rich protein with Kazal motifs in patients with colorectal cancer: MMP-2 gene expression is a useful predictor of liver metastasis from colorectal cancer. Oncol. Rep. 2008, 19, 1285.
Ougolkov, A. V.; Yamashita, K.; Mai, M.; Minamoto, T. Oncogenic β-catenin and MMP-7 (matrilysin) cosegregate in late-stage clinical colon cancer. Gastroenterology 2002, 122, 60-71.
Overall, C.; Kleifeld, O. Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br. J. Cancer 2006a, 94, 941-946.
Overall, C. M.; Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Reviews Cancer 2006b, 6, 227-239.
Pan, M. H.; Lai, C. S.; Wu, J. C.; Ho, C. T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res. 2011, 55, 32-45.
Pang, X.; Yi, Z.; Zhang, J.; Lu, B.; Sung, B.; Qu, W.; Aggarwal, B. B.; Liu, M. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res. 2010, 70, 1951-1959.
Pholphana, N.; Rangkadilok, N.; Thongnest, S.; Ruchirawat, S.; Ruchirawat, M.; Satayavivad, J. Determination and variation of three active diterpenoids in Andrographis paniculata (Burm. f.) Nees. Phytochem. Anal. 2004, 15, 365-371.
Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 2007, 17, 45-51.
Polier, G.; Ding, J.; Konkimalla, B.; Eick, D.; Ribeiro, N.; Kohler, R.; Giaisi, M.; Efferth, T.; Desaubry, L.; Krammer, P. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1. Cell death & disease 2011, 2, e182.
Porte, H.; Chastre, E.; Prevot, S.; Nordlinger, B.; Empereur, S.; Basset, P.; Chambon, P.; Gespach, C. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin‐3 and BM‐40/SPARC genes. Int. J. Cancer 1995, 64, 70-75.
Potter, J. D.; Slattery, M. L.; Bostick, R. M.; Gapstur, S. M. Colon cancer: a review of the epidemiology. Epidemiol. Rev. 1993, 15, 499-545.
Poulsom, R.; Pignatelli, M.; Stetler-Stevenson, W.; Liotta, L.; Wright, P.; Jeffery, R.; Longcroft, J.; Rogers, L.; Stamp, G. Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. The American journal of pathology 1992, 141, 389.
Pyke, C.; Ralfkiaer, E.; Tryggvason, K.; Dano, K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. The American journal of pathology 1993, 142, 359.
Ra, H.-J.; Harju-Baker, S.; Zhang, F.; Linhardt, R. J.; Wilson, C. L.; Parks, W. C. Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J. Biol. Chem. 2009, 284, 27924-27932.
Rashmi, R.; Santhosh Kumar, T.; Karunagaran, D. Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett. 2003, 538, 19-24.
Reddy, M. V. B.; Kishore, P. H.; Rao, C. V.; Gunasekar, D.; Caux, C.; Bodo, B. New 2''-oxygenated flavonoids from Andrographis affinis. J. Nat. Prod. 2003, 66, 295-297.
Rodriguez, L. G.; Wu, X.; Guan, J.-L., Wound-healing assay. In Cell Migration, Springer: 2005; pp 23-29.
Roeb, E.; Dietrich, C. G.; Winograd, R.; Arndt, M.; Breuer, B.; Fass, J.; Schumpelick, V.; Matern, S. Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma. Cancer 2001, 92, 2680-2691.
Roeb, E.; Arndt, M.; Jansen, B.; Schumpelick, V.; Matern, S. Simultaneous determination of matrix metalloproteinase (MMP)-7, MMP-1,-3, and-13 gene expression by multiplex PCR in colorectal carcinomas. Int. J. Colorectal Dis. 2004, 19, 518-524.
Rolli, M.; Fransvea, E.; Pilch, J.; Saven, A.; Felding-Habermann, B. Activated integrin αvβ3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proceedings of the National Academy of Sciences 2003, 100, 9482-9487.
Roy, R.; Zhang, B.; Moses, M. A. Making the cut: protease-mediated regulation of angiogenesis. Exp. Cell Res. 2006, 312, 608-622.
Sandur, S. K.; Deorukhkar, A.; Pandey, M. K.; Pabon, A. M.; Shentu, S.; Guha, S.; Aggarwal, B. B.; Krishnan, S. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-κB activity. International Journal of Radiation Oncology* Biology* Physics 2009, 75, 534-542.
Sapadin, A. N.; Fleischmajer, R. Tetracyclines: nonantibiotic properties and their clinical implications. J. Am. Acad. Dermatol. 2006, 54, 258-265.
Schmalhofer, O.; Brabletz, S.; Brabletz, T., Epithelial-Mesenchymal Transition in Colorectal Cancer. In Metastasis of Colorectal Cancer, Springer: 2010; pp 147-172.
Schmieden, V.; Westhues, H. Zur Klinik und Pathologie der Dickdarmpolypen und deren klinischen und pathologisch-anatomischen Beziehungen zum Dickdarmkarzinom. Langenbeck''s Archives of Surgery 1927, 202, 1-124.
Sengupta, N.; MacDonald, T. The role of matrix metalloproteinases in stromal/epithelial interactions in the gut. Physiology 2007, 22, 401-409.
Shapiro, A. L.; Vinuela, E.; Maizel Jr, J. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. BBRC 1967, 28, 815.
Shiomi, T.; Okada, Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 2003, 22, 145-152.
Shore, E. M.; Nelson, W. Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 1991, 266, 19672-19680.
Skoudy, A.; Gomez, S.; Fabre, M.; Garcia de Herreros, A. P120‐catenin expression in human colorectal cancer. Int. J. Cancer 1996, 68, 14-20.
Stetler-Stevenson, W. G.; Yu, A. E. In Proteases in invasion: matrix metalloproteinases, Semin. Cancer Biol., 2001; Elsevier: 2001; pp 143-153.
Stockert, J. C.; Blazquez-Castro, A.; Canete, M.; Horobin, R. W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785-796.
Stupack, D. Integrins as a distinct subtype of dependence receptors. Cell Death Differ. 2005, 12, 1021-1030.
Su, C.-C.; Chen, G.-w.; Lin, J.-G.; WU, L.-T.; CHUNG, J.-G. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006, 26, 1281-1288.
Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Sci 1991, 251, 1451-1455.
Tenesa, A.; Dunlop, M. G. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 2009, 10, 353-358.
Uraguchi, M.; Morikawa, M.; Shirakawa, M.; Sanada, K.; Imai, K. Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J. Dent. Res. 2004, 83, 327-332.
Vareed, S. K.; Kakarala, M.; Ruffin, M. T.; Crowell, J. A.; Normolle, D. P.; Djuric, Z.; Brenner, D. E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology Biomarkers & Prevention 2008, 17, 1411-1417.
Varma, A.; Padh, H.; Shrivastava, N. Andrographolide: a new plant-derived antineoplastic entity on horizon. Evidence-Based Complementary and Alternative Medicine 2011, 2011.
Vincenti, M. P.; White, L. A.; Schroen, D. J.; Benbow, U.; Brinckerhoff, C. E. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Critical Reviews™ in Eukaryotic Gene Expression 1996, 6.
Vleminckx, K.; Vakaet Jr, L.; Mareel, M.; Fiers, W.; Van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991, 66, 107-119.
Vogelstein, B.; Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 2004, 10, 789-799.
Vu, T. H.; Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Science Signalling 2000, 14, 2123.
Wagenaar-Miller, R. A.; Gorden, L.; Matrisian, L. M. Matrix metalloproteinases in colorectal cancer: is it worth talking about? Cancer Metastasis Rev. 2004, 23, 119-135.
Wang, L.; Hu, C.-P.; Deng, P.-Y.; Shen, S.-S.; Zhu, H.-Q.; Ding, J.-S.; Tan, G.-S.; Li, Y.-J. The protective effects of rutaecarpine on gastric mucosa injury in rats. Planta Med. 2005, 71, 416.
Wang, L.; Kuang, L.; Pan, X.; Liu, J.; Wang, Q.; Du, B.; Li, D.; Luo, J.; Liu, M.; Hou, A. Isoalvaxanthone inhibits colon cancer cell proliferation, migration and invasion through inactivating Rac1 and AP‐1. Int. J. Cancer 2010, 127, 1220-1229.
Wang, Z.; Jin, H.; Xu, R.; Mei, Q.; Fan, D. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression. Exp. Mol. Med. 2009, 41, 717-727.
Weis, K.; Mattaj, I. Lamond Al (1995) Identification of hSRPla as a functional receptor for nuclear localization sequences. Sci 268, 1049-1053.
Weng, C. J.; Wu, C. F.; Huang, H. W.; Ho, C. T.; Yen, G. C. Anti‐invasion effects of 6‐shogaol and 6‐gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol. Nutr. Food Res. 2010, 54, 1618-1627.
Westermarck, J.; KAHARI, V.-M. Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal 1999, 13, 781-792.
Wheelock, M. J.; Johnson, K. R. Cadherins as modulators of cellular phenotype. Annu. Rev. Cell. Dev. Biol. 2003, 19, 207-235.
Whitehead, I.; Kirk, H.; Kay, R. Expression cloning of oncogenes by retroviral transfer of cDNA libraries. Mol. Cell. Biol. 1995, 15, 704-710.
Wilson, C. L.; Matrisian, L. M. Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. The international journal of biochemistry & cell biology 1996, 28, 123-136.
Wong, K. F.; Chan, J. K.; Chan, K. L.; Tam, P.; Yang, D.; Fan, S. T.; Luk, J. M. IMMUNOCHEMICAL CHARACTERIZATION OF THE FUNCTIONAL CONSTITUENTS OF TRIPTERYGIUM WILFORDII CONTRIBUTING TO ITS ANTI‐INFLAMMATORY PROPERTY. Clin. Exp. Pharmacol. Physiol. 2008, 35, 55-59.
WONG, T.-S.; CHAN, W.-S.; LI, C.-H.; LIU, R. W.-M.; TANG, W. W.-Y.; TSAO, S.-W.; TSANG, R. K.-Y.; HO, W.-K.; WEI, W. I.; CHAN, J. Y.-W. Curcumin alters the migratory phenotype of nasopharyngeal carcinoma cells through up-regulation of E-cadherin. Anticancer Res. 2010, 30, 2851-2856.
Wu, C.; Cipollone, J.; Maines‐Bandiera, S.; Tan, C.; Karsan, A.; Auersperg, N.; Roskelley, C. D. The morphogenic function of E‐cadherin‐mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 2008, 76, 193-205.
Wu, Y.; Zhang, X.; Zhou, H.; Chen, D.; Xie, H.; Mu, Y.; Wu, B.; Yan, J. Factor VIIa Regulates the Expression of Caspase-3, MMP-9, and CD44 in SW620 Colon Cancer Cells Involving PAR2/MAPKs/NF-κB Signaling Pathways. Cancer Invest. 2013, 31, 7-16.
Xu, J.; Rodriguez, D.; Petitclerc, E.; Kim, J. J.; Hangai, M.; Yuen, S. M.; Davis, G. E.; Brooks, P. C. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. The Journal of cell biology 2001, 154, 1069-1080.
Yadav, R.; Gupta, S.; Sharma, P.; Patil, V. Recent advances in studies on hydroxamates as matrix metalloproteinase inhibitors: a review. Curr. Med. Chem. 2011, 18, 1704-1722.
Yamamoto, H.; Iku, S.; Adachi, Y.; Imsumran, A.; Taniguchi, H.; Nosho, K.; Min, Y.; Horiuchi, S.; Yoshida, M.; Itoh, F. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. The Journal of pathology 2003, 199, 176-184.
Yamazaki, D.; Kurisu, S.; Takenawa, T. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005, 96, 379-386.
Yao, C.-J.; Lai, G.-M.; Yeh, C.-T.; Lai, M.-T.; Shih, P.-H.; Chao, W.-J.; Whang-Peng, J.; Chuang, S.-E.; Lai, T.-Y. Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction. Evidence-Based Complementary and Alternative Medicine 2013, 2013.
Yook, J. I.; Li, X.-Y.; Ota, I.; Hu, C.; Kim, H. S.; Kim, N. H.; Cha, S. Y.; Ryu, J. K.; Choi, Y. J.; Kim, J. A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 2006, 8, 1398-1406.
Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14, 163-176.
Yu, X.; Wu, D.-Z.; Yuan, J.-Y.; Zhang, R.-R.; Hu, Z.-B. Gastroprotective effect of fructus evodiae water extract on ethanol-induced gastric lesions in rats. The American journal of Chinese medicine 2006, 34, 1027-1035.
Zeng, Z.-S.; Shu, W.-P.; Cohen, A. M.; Guillem, J. G. Matrix Metalloproteinase-7 Expression in Colorectal Cancer Liver Metastases Evidence for Involvement of MMP-7 Activation in Human Cancer Metastases. Clin. Cancer. Res. 2002, 8, 144-148.
Zeng, Z. S.; Huang, Y.; Cohen, A. M.; Guillem, J. G. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J. Clin. Oncol. 1996, 14, 3133-3140.
Zhang, L.; Wang, X. Hydrophobic ionic liquid‐based ultrasound‐assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. J. Sep. Sci. 2010, 33, 2035-2038.
Zhou, F.; Zhou, H.; Wang, T.; Mu, Y.; Wu, B.; Guo, D.-l.; Zhang, X.-m.; Wu, Y. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro. Acta Pharmacol Sin 2011, 33, 120-126.
Zucker, S.; Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004, 23, 101-117.
汪洋; 林从尧; 周夏 大肠癌中 β-catenin 表达及与 COX-2, VEGF 表达的关系. 肿瘤防治研究 2006, 33, 20-22.
楊皓耀 台灣產薑及其成分 [6]-薑辣醇之安定性測定與藥理活性之研究; Studies on the determination of stability and pharmacological activities of Zingiberis Rhizoma and it’s constituent [6]-gingerol. 2006.
謝昀志 黃芩甘元對內皮細胞的生長及附著作用等生物效應機轉之探討; Effects of Baicalein on Proliferation and Adhesion of Cultured Rat Heart Endothelial Cells. 1999.
杨柏霖; 刘飞; 谷云飞; 金黑鹰; 刘秀芳 黄芩苷对错配修复基因缺失 LoVo 细胞的抑制作用及其机制. 世界华人消化杂志 2008, 16, 2376-2380.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊