跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐憶瑄
研究生(外文):Yi-Husan Hsu
論文名稱:鑭系元素摻雜之奈米晶體的合成分析與近紅外光驅動上轉換能力之研究
論文名稱(外文):Synthesis and characterization of near-infrared light triggered lanthanide-doped upconversion nanocrystals
指導教授:陳建宏陳建宏引用關係
指導教授(外文):Chien-Hong Chen
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:上轉換鑭系金屬980 nm近紅外光
外文關鍵詞:upconversion efficiencyluminescent materialsinfrared light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在於製備氟化物摻雜Yb3+、Tm3+ 離子的上轉換奈米粒子 (upconversion nanoparticles,UCNPs),並探討摻雜活化劑 Tm(CH3CO2)3及鹼類當量數的增加對於上轉換發光強度的影響。
實驗一開始想利用低溫高壓的方式合成UCNPs而使用了高壓反應釜。從TEM中的分析中得知,雖然部分粒徑達到預期的大小,但是TEM圖所呈現的粒子呈不規則形狀(AC7、AC14),且在980 nm的雷射激發下並沒有上轉換的效果。之後的合成加熱方式我們捨棄了高壓反應釜,改使用加熱包直接在氬氣下加熱,成功合成出粒徑小於100 nm且具有上轉換效果的NaYF4/LiYF4:Yb、Tm。
為了更一步探討UCNPs的組成濃度與上轉換效能之間的關係,並且找出最適合條件,我們將活化劑的量提高到比原本文獻的兩倍當量數,發現增加兩倍活化劑並無法提升上轉換效能,但增加LiOH/NaOH的當量數條件下發現上轉換效能的增強。另外在文獻中提到可以利用包覆核的方式增加上轉換效能,但我們以文獻相同方法合成出的粒子在TEM下並沒有核包覆的現象,而是外觀從多角形變成了棒狀。此奈米棒具有較佳的上轉換效能,計算奈米棒的長寬比aspect ratio(AR) L1S(AR=3.9)>L3S(AR=3.77)、N3S(AR=3.73)>N1S(AR=2.64),發現AR值越高者上轉換效率越高。


This study mainly discusses the synthesis of NaYF4/LiYF4 nanoparticles containing Tm3+/Yb3+. The upconversion efficiency of these nanoparticles correlated to the equivalent of activator or base during the syntheses is also demonstrated. The TEM images of the particles prepared by autoclave under lower temperature show that most of the particles are irregular (AC7 and AC14). In the meantime, the particles could not show the upconversion efficiency under 980 nm excitation. In order to improve the diameter and the upconversion efficiency of the nanoparticles, we used the heating mantle for the synthesis of the nanoparticles. The nanoparticles with upconversion efficiency and diameter less than 100nm are successfully synthesized. To study the relationship between the equivalent of the activator / base and the upconversion efficiency of the nanoparticles, we increased the equivalent of the activator. The result indicated that the upconversion efficiency was not enhanced by increasing the equivalent of the activator. However, the increasing the equivalent of the base ( LiOH / NaOH) during the synthesis resulted in the enhanced upconversion efficiency of the nanoparticles. The further addition of Y(CH3CO2)3 and base (LiOH / NaOH) to the synthesized NaYF4/LiYF4:Yb,Tm nanoparticles by the heating mantle led to the formation of new nanoparticles. The TEM images of the nanoparticles show that the shapes of the nanoparticles transformed from hexagon to rod (L1S、L3S、N1S、N3S). The analysis of the length-to-width (aspect ratio, AR) of the rod (L1S (AR=3.90), L3S (AR= 3.77); N3S (AR=3.73), N1S (AR=2.64)) showed that the rod with the higher AR value exhibited the effective upconversion efficiency.

中山醫學大學醫學應用化學系碩士論文 I
誌謝 1
摘要 2
英文摘要 4
目次 6
圖次 9
表次 11
第一章 緒論 12
1-1 鑭系金屬的介紹 12
1-2 上轉換材料介紹 13
1-3 上轉換原理 14
1-4 上轉換發光機制 14
1-5 NaYF4:Yb、Tm/ NaYF4:Yb、Er 之奈米粒子上轉換原理 18
1-6 製備上轉換奈米粒子的方法 23
1-6-1 共沉澱法 (Coprecipitation Method) 23
1-6-2 熱分解法 (Thermal Decomposition Method) 23
1-6-3 水熱/溶劑熱合成(Hydrothermal /Solvothermal Method) 24
1-6-4 微乳液法 ( Microemulsion Method) 25
1-7 上轉換奈米粒子的應用 26
1-8 研究動機 28
第二章 研究方法 30
2-1 實驗藥品與設備 30
2-2 樣品製備 32
2-3 性質測定與分析 36
2-3-1 動態光散射儀(Dynamic Light Scattering, DLS) 36
2-3-2 近紅外光980 nm雷射模組 37
2-3-3穿透式電子顯微鏡(Transmission Electron Microscope ,TEM) 38
2-3-4能量色散型X射線螢光分析裝置(Energy-dispersive X-ray spectroscope,EDS) 39
第三章 結果與討論 40
3-1 LiYF4:Yb、Tm 46
3-1-2 LiYF4:Yb、Tm增強上轉換效能之分析 52
3-2 NaYF4:Yb、Tm 59
3-4-2 NaYF4:Yb、Tm增強上轉換效能之分析 65
第四章 總結 79
參考文獻 81


1.Yi, G. S.; Chow, G. M., Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv. Funct. Mater 2006, 16 , 2324-2329.
2.Wang, W.; Huang, W.; Ni, Y.; Lu, C.; Xu, Z., Different Upconversion Properties of β-NaYF4:Yb3+,Tm3+/Er3+ in Affecting the Near-Infrared-Driven Photocatalytic Activity of High-Reactive TiO2. ACS Appl. Mat. Interfaces 2013, 6 , 340-348.
3.Farnau, E. F., Luminescence. J. Phys. Chem. 1912, 17 , 637-656.
4.Heer, S.; Kömpe, K.; Güdel, H. U.; Haase, M., Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004, 16, 2102-2105.
5.Zhang, S.; Wang, J.; Xu, W.; Chen, B.; Yu, W.; Xu, L.; Song, H., Fluorescence Resonance Energy Transfer Between NaYF4:Yb,Tm Upconversion Nanoparticles and Gold Nanorods: Near-infrared Responsive Biosensor for Streptavidin. J. Lumin. 2014, 147 , 278-283.
6.Luu, Q.; Hor, A.; Fisher, J.; Anderson, R. B.; Liu, S.; Luk, T.-S.; Paudel, H. P.; Farrokh Baroughi, M.; May, P. S.; Smith, S., Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays. J. Phys. Chem. 2014, 118 , 3251-3257.
7.Schäfer, H.; Ptacek, P.; Kömpe, K.; Haase, M., Lanthanide-Doped NaYF4 Nanocrystals in Aqueous Solution Displaying Strong Up-Conversion Emission. Chem. Mater. 2007, 19 , 1396-1400.
8.Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y., Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles. J. Am. Chem. Soc. 2012, 134 , 16558-61.
9.Liu, X.; Zheng, M.; Kong, X.; Zhang, Y.; Zeng, Q.; Sun, Z.; Buma, W. J.; Zhang, H., Separately Doped Upconversion-C60 Nanoplatform for NIR Imaging-Guided Photodynamic Therapy of Cancer Cells. Chem. Commun. 2013, 49 , 3224-6.
10.Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H., High-Quality Sodium Rare-Earth Fluoride Nanocrystals:  Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 2006, 128 , 6426-6436.
11.Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R., Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16 , 1244-1251.
12.Wei, Y.; Lu, F.; Zhang, X.; Chen, D., Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates. Chem. Mater. 2006, 18 , 5733-5737.
13.Bloembergen, N., Solid State Infrared Quantum Counters. Phys. Rev. Lett. 1959, 2 , 84-85.
14.Chen, J.; Zhao, J. X., Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors 2012, 12 , 2414-35.
15.Xue, X.; Uechi, S.; Tiwari, R. N.; Duan, Z.; Liao, M.; Yoshimura, M.; Suzuki, T.; Ohishi, Y., Size-Dependent Upconversion Luminescence and Quenching Mechanism of LiYF4: Er3+/Yb3+ Nanocrystals with Oleate Ligand Adsorbed. Opt. Mater.Express 2013, 3, 989.
16.Boyer, J.-C.; Carling, C.-J.; Gates, B. D.; Branda, N. R., Two-Way Photoswitching Using One Type of Near-Infrared Light, Upconverting Nanoparticles, and Changing Only the Light Intensity. J. Am. Chem. Soc.2010, 132 , 15766-15772.
17.陳維旻,三價鑭系金屬錯合物的合成及其光物理性質的探討,國立清華大學化學系2008.
18.Chen, X.; Song, Z.; Wu, J.; Sawanoboi, N.; Ohtsuka, M.; Li, Y.; Zhou, J.; Wang, C.; Liu, J.; Tian, Q.; Sun, P.; Jing, H., Ultraviolet and Visible Upconversion Luminescence of Tm(0.1)Yb(5):FOV Oxyfluoride Nanophase Vitroceramics. Sci. China, Ser. G 2008, 51 , 1868-1876.
19.Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R., Intense Ultraviolet Upconversion Luminescence from Hexagonal NaYF4:Yb3+/Tm3+ Microcrystals. Opt. Express 2008, 16 , 11907-11914.
20.Liao, M.; Wen, L.; Zhao, H.; Fang, Y.; Sun, H.; Hu, L., Mechanisms of Yb3+ Sensitization to Tm3+ for Blue Upconversion Luminescence in Fluorophosphate Glass. Mater.Lett. 2007, 61 , 470-472.
21.Luu, Q.; Hor, A.; Fisher, J.; Anderson, R. B.; Liu, S.; Luk, T.-S.; Paudel, H. P.; Farrokh Baroughi, M.; May, P. S.; Smith, S., Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays. J. Phys. Chem. C 2014, 118 , 3251-3257.
22.Zhou, J.; Chen, G.; Wu, E.; Bi, G.; Wu, B.; Teng, Y.; Zhou, S.; Qiu, J., Ultrasensitive Polarized Upconversion of Tm(3+)-Yb3+ Doped Beta-NaYF4 Single Nanorod. Nano Lett. 2013, 13 , 2241-6.
23.Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L.-H., Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett. 2004, 4 , 2191-2196.
24.Zhang, Y.-W.; Sun, X.; Si, R.; You, L.-P.; Yan, C.-H., Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 2005, 127 , 3260-3261.
25.Wang, X.; Zhuang, J.; Peng, Q.; Li, Y., A General Strategy for Nanocrystal Synthesis. Nature 2005, 437 , 121-124.
26.Shan, S.-N.; Wang, X.-Y.; Jia, N.-Q., Synthesis of NaYF4:Yb3+, Er3+ Upconversion Nanoparticles in Normal Microemulsions. Nanoscale Res. Lett 2011, 6 , 1-5.
27.Zhang, F.; Braun, G. B.; Pallaoro, A.; Zhang, Y.; Shi, Y.; Cui, D.; Moskovits, M.; Zhao, D.; Stucky, G. D., Mesoporous Multifunctional Upconversion Luminescent and Magnetic "Nanorattle" Materials for Targeted Chemotherapy. Nano Lett .2012, 12 , 61-7.
28.董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,國立中央大學化學工程研究所,2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top