跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗翰
研究生(外文):Zong-Han Wu
論文名稱:紫草微膠囊/海藻酸鈉塗覆PLA/Tencel複合敷料之製備技術與特性評估
論文名稱(外文):Manufacturing Technique and Property Evaluation of Composite Dressings: Using Freeze-Drying Technique to Coat Shikonin Microcapsule and Sodium Alginate on PLA/Tencel Matrices
指導教授:林佳弘林佳弘引用關係
指導教授(外文):Jia-Horng Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:200
中文關鍵詞:微膠囊果膠海藻酸鈉紫草創傷敷料
外文關鍵詞:Sodium alginateShikoninLithospermum erythrorhizonWound dressingsMicrocapsulePectin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:795
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
日常生活中因人體受傷而使用敷料,目前市面所販售之敷料種類繁多,為滿足人們的需求,多弁鉏躓⑥]應而生,但其製品仍有部分弁鄔呇釩搛伀j,例如敷料黏結傷口、透氣性差、基材無法吸收組織液等,相對的,真正好的敷料必須具備良好之透氣性、吸濕性、移除容易及幫助傷口癒合等特性,才能有效達到傷口癒合的成效。
本研究規劃區分成三大部分,第一部分敷料基布,利用PLA 纖維與Tencel®纖維製備機能性非織物基布,變化纖維混比以調整其強度、透氣性、柔軟性及水氣透過率,得到最佳敷料基布製備條件。第二部分(a)海藻酸鈉敷料接觸層之製備,(b)中藥紫草萃取以及(c)海藻酸鈉/果膠微膠囊製備,評估敷料接觸層:膨潤性、保濕性、降解性,評估中藥紫草:萃取率、抑菌性、細胞毒性等測試以及評估紫草微膠囊:海藻酸鈉/果膠混比、藥物釋放、細胞存活率等,評估其最佳製備條件。第三部分複合敷料製備,將紫草微膠囊/海藻酸鈉與PLA/Tencel®非織物基布利用塗覆結合,製成之複合敷料進行機械性質評估與動物試驗。
實驗結果顯示,最佳非織物基布參數為PLA /Tencel®50 wt%:50 wt%。敷料接觸層海藻酸鈉(1 wt%),最佳交聯濃度為氯化鈣0.066 wt%。紫草萃取物最佳濃度為1 mg/ml,紫草微膠囊最佳混比為海藻酸鈉/果膠1:1,在細胞存活率有最高值99 %。動物實驗結果顯示,使用紫草微膠囊/海藻酸鈉塗覆PLA/Tencel®複合敷料、紫草微膠囊,手術後第11天之傷口創面幾乎完全癒合。市售敷料在手術後第15天,傷口癒合僅達到91.5 %。結果顯示紫草微膠囊/海藻酸塗覆PLA/Tencel®複合敷料確實具促進傷口癒合效果。
Dressings were used our daily life when the body is injured. Nowadays, there are many different kinds of dressings occur in the market. Multi-functional dressings have emerged for satisfying the requirements for human. However, dressings still have a part of functionality that remains to improve, such as adherence with wounds, bad air permeability, poor absorbability to tissue fluid. Hence, excellent dressings should have properties of good air permeability, hygroscopicity, easy removal and accelerating wound healing for effect of wound healing.
This study divides into three parts. The first is preparation of functional dressing fabric that is composed of PLA and Tencel® fibers. In this part, the optimal processing parameters of fabric are found by adjusting to the blending ratios of fibers and evaluating the strength, air permeability, softness, and water vapor permeation. The second is (a) the preparation of Sodium Alginate dressing as wound contact layer, (b) the extraction of Lithospermum erythrorhizon and (c) the preparation of Sodium Alginate/ Pectin microcapsules. The contact layer is evaluated by swelling ratio, moisture retention and vitro degradation. The shikonin extraction is characterized by extraction rate, antimicrobial activity and cell biocompatibility, and microcapsules are assessed in terms of hydrophilia, drug release, and MTT assay. The third is the preparation of composite dressings that are made by PLA/Tencel® nonwoven fabric, shikonin microcapsule and Sodium Alginate based on 3D lattice-point coating. Afterwards, the composite dressings are evaluated by mechanical performance and animal experiment.
The experimental results show that, the optimum blending ratio of PLA and Tencel® fibers is 50 wt%: 50 wt%. The optimum wound contact layer contains 1wt% sodium alginate, and 0.066 wt% Calcium chloride cross-linking agent. The cell survival rate rises up to 99 % when microcapsules comprise 1mg/ml of shikonin solution, and 1:1 sodium Alginate and Pectin. Animal experiment results reveals that, PLA/Tencel® composite dressings after being coated with sodium alginate and then shikonin microcapsules, the wound almost cures completely by 11 days after operation; comparatively, the wound only heals 91.5 % after 15 days postoperation when using market dressings. This indicates that, shikonin microcapsules/sodium alginate coated PLA/Tencel® composite dressings accelerate the effect of wound healing.
目錄
中文摘要 I
Abstract II
第一章 緒論 1
1.1皮膚 3
1.1.1皮膚的構造 3
1.1.2 皮膚 6
1.1.3 傷口的形成 8
1.1.4 創傷癒合 8
1.2 創傷敷料 11
1.2.1敷料的發展 11
1.3 海藻酸鈉 14
1.3.1 海藻酸鈉交聯特性 14
1.4 果膠(Pectin) 16
1.4.1果膠來源 16
1.4.2果膠之特性 16
1.4.3果膠之應用 17
1.5 紫草 20
1.6藥物微膠囊 23
1.6.1藥物控制釋放 23
1.6.2降低藥物毒性 24
1.6.3對藥物的保護作用 24
1.6.4微膠囊化藥物可與其他組分隔離 24
1.7 聚乳酸纖維 25
1.7.1聚乳酸之應用 25
1.8 Lyocell (商品名 Tencel ®) 纖維 28
1.9 文獻回顧 31
1.9.1國內外與本論文相關之研究現況 31
1.9.2國內外相關本論文之研究專利 37
1.10 研究動機 41
1.11 研究目的 43
第二章 研究原理 44
2.1 梳棉原理 44
2.1.1梳理作用 44
2.1.2剝取作用 44
2.2 疊棉原理 46
2.3 針軋原理 47
2.4 冷凍乾燥原理 49
2.7 專業名詞定義 52
第三章 實驗 54
3.1第一部分非織物敷料基布之實驗流程 54
3.1.1第一部分非織物實驗流程說明 55
3.2.1第二部分(a)敷料接觸層之實驗流程 56
3.2.1.1第二部分(a)敷料接觸層實驗流程說明 57
3.2.2第二部分(b) 中藥紫草之實驗流程 58
3.2.2.1第二部分(b)紫草中草藥實驗流程說明 59
3.2.3第二部分(c)微膠囊之實驗流程 61
3.2.3.1第二部分(c)海藻酸鈉/果膠微膠囊實驗流程說明 62
3.3第三部分複合敷料之實驗流程 64
3.3.1第三部分複合敷料實驗流程說明 65
3.4 實驗材料 68
3.5 實驗參數設計 69
3.6實驗設備及儀器 70
3.7非織物測試項目及標準 72
3.7.1最大拉伸斷裂強力試驗 72
3.7.2撕裂強度測試 73
3.7.3 透氣度試驗 74
3.7.4柔軟性(挺性)測試 74
3.7.5吸水性試驗 75
3.7.6 水蒸氣透過實驗 76
3.8薄膜測試項目與方法 77
3.8.1 薄膜保濕性測試 77
3.8.2 薄膜降解性測試 77
3.8.3 薄膜膨潤性測試 77
3.8.4 多孔海綿表面型態觀察 78
3.9中藥紫草萃相關測試 78
3.9.1中藥紫草萃取率 78
3.9.2紫草萃取物之UV紫外光分光光度計 78
3.10金黃色葡萄球菌抑菌試驗 79
3.10.1定性試驗 79
3.11 體外測試-細胞培養 80
3.11.1 細胞培養 80
3.11.2 細胞計數 81
3.11.3 材料與細胞共培養 82
3.11.4細胞存活率測試(MTT Assay) 83
3.12體內測試-動物實驗 84
3.12.1動物實驗步驟與傷口觀察 84
3.12.2傷口減少面積 85
第四章 結果與討論 86
4.1 非織物基布測試 86
4.1.1 PLA/ Tencel®混棉比例對非織物基布水氣通透率之影響 86
4.1.2 PLA/ Tencel®非織物基布塗覆敷料接觸層前後之水氣透過率 86
4.1.3 PLA/ Tencel®混棉比例對非織物基布吸水性之影響 90
4.1.4 PLA/ Tencel®混棉比例對非織物敷料基布透氣度之影響 93
4.1.5 PLA/ Tencel®混棉比例對非織物敷料基布懸垂度之影響 95
4.1.6 PLA/ Tencel®混棉比例對非織物敷料基布最大拉伸強力之影響 97
4.1.7 PLA/ Tencel®混棉比例對非織物敷料基布最大撕裂強力之影響 99
4.2 敷料接觸層 101
4.2.1海藻酸鈉與不同濃度氯化鈣交聯對膨潤性之影響 101
4.2.2海藻酸鈉與不同濃度氯化鈣交聯對降解性之影響 103
4.2.3 海藻酸鈉與不同濃度氯化鈣交聯對保濕性之影響 105
4.2.4 海藻酸鈉與不同濃度氯化鈣交聯之細胞相容性測試與掃描電子顯微鏡觀察 107
4.3 中藥紫草相關測試 122
4.3.1 中藥紫草萃取率評估 122
4.3.2 紫草萃取液對金黃色葡萄球菌之抑菌性測試 127
4.3.3不同濃度紫草萃取物對細胞相容性之影響 131
4.3.4不同濃度紫草萃取物對細胞存活率之影響 140
4.4 果膠/海藻酸鈉海微膠囊 142
4.4.1低甲氧基果膠/海藻酸鈉複合薄膜於不同混合比例與氯化鈣交聯對水接觸角之影響 142
4.4.2低甲氧基果膠/海藻酸鈉複合薄膜於不同混合比例與氯化鈣交聯對膨潤率之影響 144
4.4.3低甲氧基果膠/海藻酸鈉複合薄膜於不同混合比例與氯化鈣交聯對水中穩定性之影響 146
4.4.4低甲氧基果膠/海藻酸鈉複合薄膜於不同混合比例與氯化鈣交聯對保濕性之影響 148
4.4.5低甲氧基果膠/海藻酸鈉之微膠囊掃描電子顯微鏡 151
4.4.6紫草萃取物之檢量線 154
4.4.7低甲氧基果膠/海藻酸鈉不同比例紫草微膠囊之藥物釋放 155
4.4.8 各種紫草微膠囊之細胞存活率測試 158
4.5動物實驗 160
4.5.1各種複合敷料對傷口癒合各天數下之影響 160
4.5.2各天數下不同複合敷料對傷口減少面積之影響 168
第五章、結論 172
第六章、建議 175
參考文獻 177
[1] Winter G.D., Formation of the scab and rate of epithelialisation of superficial wounds in the skin of a young domestic pig. Nature, 193, 293-29, (1962).
[2] 陳百方,生物醫學工程學,北京:科學出版社,第1-2卷29-49頁,1997。
[3] 朱兆文,生物技術產業現況與展望專題研究,ITIS計畫,台灣:生物技術開發中心,107-117頁,1996。
[4] 葉碧芳,實用傷口護理,華杏出版股份有限公司,7-16頁,2006。
[5] 野@昌,新編解剖生理學,台灣:永大書局,98-100頁,2000。
[6] 于博芮,最新傷口護理學,華杏出版股份有限公司,23-25頁,2007。
[7] Turner T.D., Hospital usage of absorbent dressings, PHARMACEUTICAL, 22(2), 421-426, (1979).
[8] Stashak Ted S., Update on Wound Dressings:Indications and Best Use. Clinical Techniques In Equine Practice, 3(2), 148-163, (2004).
[9] Levine, N. S., Lindberg, R. A., Salisbury, R. E., Mason, A. D., Jr., & Pruitt, B.A., Jr., Comparison of coarse mesh gauze with biologic dressings on granulating wounds. Am.J.Surg, 131, 727-729, (1976).
[10] Linda G.Phillips, M., Wound Healing. In Sabiston Textbook of Surgery, 16, 131-144 , (2001).
[11] Malmsjo, M., Ingemansson, R., Martin, R., & Huddleston, E., Negative-pressure wound therapy using gauze or open-cell polyurethane foam: similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound.Repair Regen, 17, 200-205, (2009).
[12] McGuckin, M., Goldman, R., Bolton, L., & Salcido, R., The clinical relevance of microbiology in acute and chronic wounds. Adv.Skin Wound.Care, 16, 12-23, (2003).
[13] Morykwas, M. J., Argenta, L. C., Shelton-Brown, E. I., & McGuirt, W., Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann.Plast.Surg, 38, 553-562, (1997).
[14] 張俊鴻,以EDTA、海藻酸鈉對砷及鉻污染土壤萃取效率之研究,國立中央大學環境工程研究所碩士論文,2006。
[15] Higgs, P.G., Ball, R.C., A Reel-Chain Model for the elasticity of biopolymer gels, and its relationship to slip-link treatments of entanglements. NEW YORK, 185-194, (1990).
[16] Park, K., Shalaby, W.S.W., Biodegradable Hydrogels for Drug Delivery. Technomic, 99-140, (1993).
[17] Sutherland, I. W., Alginates. New York, (1991).
[18] Hennink, W.E., Nostrum, C.F., Novel Crosslinking Methods to Design Hydrogels. Advance Drug Delivery Reviews, 54, 13-36, (2002).
[19] 謝啟芝,乳化內相凝膠法製備海藻膠微球對重金屬吸附行為研究,靜宜大學應用化學研究所碩士論文,2005。
[20] 羅淑卿、林木連,認識果膠,技術服務,第45卷第30-33期,2001。
[21] 林欣榜,植物多醣體之應用-果膠,食品工業,第11卷46-55頁,1995。
[22] 郭麗雪,幾丁聚醣-果膠-海藻酸鈉複合膠包覆兒茶素其釋放特性之研究,海洋大學,食品科學系碩士學位論文,2003。
[23] 草地道一,果膠在食品工業上的應用,日本:食品工業,第11卷44-55頁,1984。
[24] 徐德锋,管鹏健,毛志强,李绍,紫草素的全合成研究进展,Chinese Journal of Organic Chemistry,第25卷第 7期 771-779頁,2005。
[25] 羅學婭,紫草的藥理作用與應用研究進展,大連大學學報,第25卷第 2期,2004。
[26] 吳芷儀,蔡瑞真,外用紫雲膏生體相等性之皮膚藥動藥效學評估,國立成奶j學臨床藥學研究所,碩士論文,2008。
[27] 王振,微膠囊與微膠囊包覆技術,高雄工學院化工系,微觀化學工程專刊,第42卷第2期28-41頁,1995。
[28] 梁治齊,微膠囊技術及其應用,科學技術資料中心,中國輕工業出版社,1999。
[29] Balakrishnan B., Mohanty M., Umashankar P., Jayakrishnan A., Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26(63), 35–42, (2005).
[30] 黃義侑,生分解性PLA及其共聚物在醫學上的應用,化工技術,第四卷第七期152-159頁,1996。
[31] 李瑞生,淺談「經化學修飾之纖維素在醫藥用品分野的應用」,財團法人紡織產業綜合研究所,紡織速報,第5卷第9期5-6頁,2006。
[32] 蘭精纖維公司測試報告:Tencel®。
[33] Thomas A., Harding K., Moore K., Alginates from wound dressing activate human macrophages to secrete tumor necrosis factor-a. Biomaterials, 21, 1797–802, (2000).
[34] 陸蕾,羅志剛,何小維,海藻酸鈉在醫學工程上的應用研究進展,醫療衛生裝備,第29卷第9期 33-35頁,2008。
[35] 秦益民,海藻酸醫用敷料吸濕機理分析,紡織學報,第26卷,第1期,2005。
[36] 李翼新,林向東,羅曉玲等,低甲氧基果膠凝膠特性的研究,食品科學,第 69卷10-15頁,1994。
[37] 王衛平,食品改良劑:親水膠體的性質及應用,果膠食品與發酵工業,第4卷81-84頁,1994。
[38] 焦雲鵬,徐偉,朱秀靈,低甲氧基果膠的膠凝機理及防止預凝膠形成的措施,四川工業學院學報,第30卷第3期195頁,2004。
[39] O. Wichterle, D. Lim, Hydrophilic gels in biologic use. Nature, 185, 117.
[40] F. Lim, A. M. Sun, Microencapsulated is lets as bioartificial pancreas. Science, 210. 908-910, (1980).
[41] I. V. Yannas, E. Lee, D. P. Orgill, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc.Natl. Acad. Sci, 86, 933-937, (1989).
[42] 王延熹,非織造布生產技術,紡織工業出版社,133-156頁,
1984。
[43] 蔡易儒、雷澄環,PET蓬鬆阻燃非織布隔熱填充材料之製程分析與性能評估,逢甲大學紡織工程研究所碩士論文,34頁,2007。
[44] 余盛機,非織物製造技術,台灣:國彰出版社,72-75頁,1987。
[45] 高健薰,真空技術與應用。國科會精密儀器發展中心出版。台灣:全華圖書股份有限公司,281-290 頁。
[46]ASTM Standard D5035-06. 2008. Standard test method for Breaking force and elongation of textile fabrics (Strip Method).
[47] ASTM Standard D5733-99. 2008. Standard Test Method for Tearing Strength of Nonwoven Fabrics by the Trapezoid Procedure.
[48]ASTM Standard D737-04. 2008. Standard test method for air permeability.
[49] CNS 12915中華民國國家標準,一般織物測試法。
[50] M. Fwulong, Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22, 166-173, (2001).
[51] L.O. Lamke, G.E. Nilsson, H.L. Reithner, The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Journal of the International Society for Burn Injuries. 3, 159-165, (1977).
[52] José Roberto R. de Souza, José Ivan X. de Carvalho, Maria Teresa S. Trevisan, Regina C.M. de Paula, Nágila M.P.S. Ricardo, Judith P.A. Feitosa, Chitosan-coated pectin beads: Characterization and in vitro release of mangiferin. Food Hydrocolloids, 23, 2278-2286, (2009).
[53] Ozaki Y., Antiinflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull, 40, 954-956, (1992).
[54] Ozaki Y., Ohno A., Abe K., Saito Y. and Satake M., Comparative study on the accelerative effect of koushikon and nanshikon and their constituents on proliferation of granuloma tissue in rats. Biol Pharm Bull, 16, 683-685, (1993).
[55] Ozaki Y., Ohno A., Saito Y. and Satake M., Accelerative effect of shikonin, alkannin and acetylshikonin on the proliferation of granulation tissue in rats. Biol Pharm Bull, 17, 1075-1077, (1994).
[56] Ozaki Y., Sakaguchi I., Tujimura M., Ikeda N., Nakayama M., Kato Y., Suzuki H. and Satake M., Study of the accelerating effect of shikonin and alkannin on the proliferation of granulation tissue in rats. Biol Pharm Bull, 21, 366-370, (1998).
[57] Sakaguchi I., Tsujimura M., Ikeda N., Minamino M., Kato Y., Watabe K, Tano I and Kaneda K, Granulomatous tissue formation of shikonin and shikonin by air pouch method. Biol Pharm Bull, 24, 650-655, (2001).
[58] Sidhu G.S., Singh A.K., Banaudha K.K.,Gaddipati J.P., Patnaik G.K. and Maheshwari R.K., Arnebin-1 accelerates normal and hrdrocortisone-induced impaired wound healing. J Invest Dermatol, 113, 773-781, (1999).
[59] Chen X., Yang L., Oppenheim J.J. and Howard M.Z., Cellular pharmacology studies of shikonin derivatives. Phytother Res, 16, 199-209, (2002).
[60] Hayashi M., [Phatmacological studies of Shikonin and Tooki.(2) Phatmacological effects of the pigment components, Shikonin and acetylshikonin]. Nippon Yakurigaku Zasshi, 73, 193-203, (1977).
[61] Hayashi M., [Phatmacological studies of Shikonin and Tooki. (3)Effect of topical application of the ether extracts and Shiunko on inflammatory reactions]. Nippon Yakurigaku Zasshi, 73, 205-214, (1977).
[62] Huang K.F., Hsu Y.C., Lin C.N., Tzeng J.I., Chen Y.W. and Wang J.J., Shiunko promotes epithelization of wound skin. Am J Chin Med, 32, 389-396, (2004).
[63] Lu P.J., Yang C., Lin C.N., Li C.F., Chu C.C., Wang JJ and Chen JY, Shiunko and acetylshikonin promote reepithelialization, angiogenesis, and granulation tissue formation in wounded skin. Am J Chin Med, 36, 115-123, (2008).
[64] A. Sionkowska, H. Kaczmarek, M. Wisniewski, J. Skopinska, S. Lazare, V. Tokarev, The influence of UV irradiation on the surface of films. Surface Science, 600, 3775-3779, (2006).
[65] Hu Kun, Zhang Ai-ying, Zhang Yong-yu, Li Shao-shun, Separation and preparation of shikonin from lithospermun erythrorhizon. Natural Product Research and Development, 3 (16), (2004).
[66] 北京藥學系中藥化學研究,藥用紫草素的提取及其制劑,北京醫學院學報,第1卷42-45頁,1979。
[67] 陳敏,覃仁安,王培民,用均勻設計法優選紫草素的提取工藝,中國醫院藥學雜誌,第4卷第21期251頁,2001。
[68] 李立榮,崔志高,肖潤禾,對紫草中紫草色素的初步研究,湖南中醫學院學報,第2卷第20期25-26頁,2000。
[69] Mariya Marudova, Alistair J. MacDougall and Stephen G. Ring, Pectin–chitosan interactions and gel formation. Carbohydrate Research, 339, 1933–1939, (2004).
[70] Cheorun Jo, Hojin Kang, Na Young Lee, Joong Ho Kwon, Myung Woo Byun, Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiation Physics and Chemistry, 72, 745–750, (2005).
[71] Mei-Hua Huang, Ming-Chien Yang, Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. International Journal of Pharmaceutics, 346, 38–46, (2008).
[72] Biji Balakrishnana, M. Mohantyb, P.R. Umashankarc, A. Jayakrishnana, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26, 6335–6342, (2005).
[73] Wei Wang , Shaoqiang Lin, Yechen Xiao, Yadong Huang d, Yi Tan, Lu Cai, Xiaokun Li a, Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sciences, 82, 190–204, (2008).
[74] Sha Huang, Xiaobing Fu, Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of Controlled Release, 142, 149–159, (2010).
[75] Bai-Shuan Liu, Tsung-Bin Huang, POLYMER COMPOSITES-A Novel Wound Dressing Composed of Nonwoven Fabric Coated with Chitosan and Herbal Extract Membrane for Wound Healing. 1037-1047, (2010).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top