|
參考文獻 1. Chen, T.-Y. On the development of imaginal buds in normal and mutant Drosophila melanogaster. Journal of Morphology 47, 135-199 (1929). 2. Kenyon, K. L. et al. Coordinating Proliferation and Tissue Specification to Promote Regional Identity in the Drosophila Head. Developmental Cell 5, 403-414 (2003). 3. Wang, C.-W. and Sun Y.-H. Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 139, 3413-3421 (2012). 4. Mandaravally Madhavan, M. and Schneiderman H. A. Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Wilhelm Roux's archives of developmental biology 183, 269-305 (1977). 5. Morata, G. and Lawrence P. A. Development of the eye-antenna imaginal disc of Drosophila. Developmental Biology 70, 355-371 (1979). 6. Bate, M. and Arias A. M. The embryonic origin of imaginal discs in Drosophila. Development 112, 755-761 (1991). 7. Yao, J.-G. et al. Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila. Dev Biol 315, 535-551 (2008). 8. Wang, L.-H. et al. The role of eyg Pax gene in the development of the head vertex in Drosophila. Dev Biol 337: 246-258 (2010). 9. Joyner, A. L. Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends in Genetics 12, 15-20 (1996). 10. Yao, J.-G. and Sun Y.-H. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. The EMBO Journal 24, 2602-2612 (2005). 11. Green, P. et al. The embryonic development of the Drosophila visual system. Cell and Tissue Research 273, 583-598 (1993). 12. Aldaz, S. and Escudero, L. M. Imaginal discs. Curr Biol 20, R429-R431 (2010). 13. Widmann, T. J. and Dahmann, C. Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. J Cell Sci 122, 1362-1373 (2009). 14. Moczek, A. P. Integrating micro- and macroevolution of development through the study of horned beetles. Heredity 97, 168-178 (2006). 15. Blair, S. S. Drosophila Imaginal Disc Development: Patterning the Adult Fly. Development: Genetics, Epigenetics and Environmental Regulation. Springer Berlin Heidelberg 21, 347-370 (1999). 16. Odell, G. M. et al. The mechanical basis of morphogenesis. Developmental Biology 85, 446-462 (1981). 17. Leptin, M. and Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73-84 (1990). 18. Martin, A. C. and Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987-1998 (2014). 19. Odell GM et al. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol 85, 446-462 (1981). 20. Sweeton, D. et al. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775-789 (1991). 21. Kondo, T. and Hayashi S. Mechanisms of cell height changes that mediate epithelial invagination. Dev Growth Differ 57, 313-323 (2015). 22. Swarup S. and Verheyen EM. Wnt/Wingless Signaling in Drosophila. Cold Spring Harb Perspect Biol 4, 1-15 (2012). 23. Schmidt-Ott, U. and Technau G. M. Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116, 111-125 (1992). 24. Morata, G. and Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255: 614-617 (1975). 25. Courvoisier, F. Ultrafast laser micro- and nano-processing with nondiffracting and curved beams. Optics & Laser Technology 80, 125-137 (2016). 26. Diebel, F. et al. Optical induction scheme for assembling nondiffracting aperiodic Vogel spirals. Applied Physics Letters 104, 1-4 (2014). 27. McGloin, D. and Dholakia, K. Bessel beams: Diffraction in a new light. Contemporary Physics 46, 15-28 (2005). 28. Huisken, J. et al. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007-1009 (2004). 29. Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1-12 (2014). 30. Petsas, K. I. et al. Crystallography of optical lattices. Physical Review A 50, 5173-5189 (1994). 31. Tabata, T. et al. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis." Development 121, 3359-3369 (1995). 32. Kondo, T. and Hayashi, S. Mitotic cell rounding accelerates epithelial invagination. Nature 494, 125-129 (2013). 33. Wang, C.-W. Study of the Molecular Mechanism in Drosophila eye-antenna segregation. Ph.D. Thesis. Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University. (2012) 34. Wang, L.-H. et al. Temporal switching of regulation and function of eye gone (eyg) in Drosophila eye development." Developmental biology 321, 515-527 (2008). 35. Kassis, J. A. et al. Altering the insertional specificity of a Drosophila transposable element. Proc. Nail. Acad. Sci. 89, 1919-1923 (1992). 36. Rand, M. D. et al. Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology 40, 792-804 (2010). 37. Pai, C. Y. et al. The homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes & Development 12, 435-446 (1998). 38. Zeidler, M. P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotech 22, 871-876 (2004). 39. Pilauri, V. et al. (2005). Gal80 Dimerization and the Yeast GAL Gene Switch. Genetics 169, 1903-1914 (2005). 40. Willumsen, B. M. et al. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583-586 (1984). 41. Willumsen, B. M. et al. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. The EMBO Journal 3, 2581-2585 (1984). 42. Gao, J. et al. (2009). CAAX-box protein, prenylation process and carcinogenesis. American Journal of Translational Research 1, 312-325 (2009). 43. Turner, F.R. and Mahowald, A.P. Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev. Biol. 68: 96-109 (1979). 44. Jones, N. A. et al. The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development 125, 4163-4174 (1998). 45. Wang, C.-W. and Sun, Y.-H. Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 139: 3413-3421 (2012). 46. Mathew, B. et al. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition. BMC Bioinformatics 16, 1-14 (2015). 47. Stegmaier, J. et al. (2016). Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos. Dev Cell 36, 225-240 (2016).
|