跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱智誠
研究生(外文):Chih-Cheng Chu
論文名稱:磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
論文名稱(外文):On the structure and optoelectronic properties of Zr, Ti co-doped ZnO thin films prepared by magnetron sputtering
指導教授:林景崎
指導教授(外文):Jing-Chie Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:117
中文關鍵詞:摻雜氧化鋅磁控濺鍍功函數光學性質電阻率電化學特性
外文關鍵詞:Doped Zinc Oxide thin filmmagnetron sputteringwork functionOptical propertyelectoral propertyelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在玻璃基材上,以磁控濺鍍系統,固定氧化鋅靶在RF 功率為150 W,鈦靶在DC功率分別為10、20和30W,鋯靶在RF 功率分別為0、25、50、60、75 和100 W下濺鍍2小時,可製備出不同鈦含量的摻鈦氧化鋅(Ti doped zinc oxides, TZO)薄膜、不同鋯含量的摻鋯氧化鋅(Zr doped zinc oxides, ZZO)薄膜以及不同鋯含量的鋯、鈦共摻氧化鋅(Zr, Ti co-doped zinc oxides, ZTZO)薄膜。經由感應耦合電漿質譜儀(inductively coupled plasma mass spectrometry; ICP-MS)分析結果顯示:鍍膜中鈦原子百分比則隨著直流濺鍍功率的增加而遞增(0.71~1.12 at.%);而鍍膜中鋯原子百分比則隨著射頻濺鍍功率的增加而遞增(1.61~6.12 at.%)。薄膜之化學狀態經由X光光電子能譜儀(X-ray photoelectron spectrometer; XPS)分析得知,位於458.8(Ti 2p3/2) eV,為TiO2狀態之正四價鈦。位於182.2 (Zr 3d5/2)與184.5 (Zr 3d3/2) eV束縛能則屬於ZrO2正四價鋯之峰值。晶體結構方面使用XRD分析可得知ZZO、TZO和ZTZO透明導電薄膜都可改善純氧化鋅(002)峰值強度。由場發射式掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscope;FE-SEM)觀察結果顯示:濺鍍所得氧化鋅薄膜皆為柱狀晶,其膜厚均約為350 nm。隨著摻雜量增加,薄膜柱狀晶直徑會有下降的現象。由原子力顯微鏡(Atomic force microscopy; AFM)分析可了解摻鈦氧化鋅薄膜與鋯共摻雜後,因晶粒細化而使得Ra與Rmax下降,導致薄膜表面更平滑。由場發射鎗穿透式電子顯微鏡(Field Emission Gun Transmission Micro-scope, FEG-TEM)結果顯示:於濺鍍沉積時,薄膜以柱狀晶成長且(002)晶面方向垂直於基板。
紫外光光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS)分析顯示:鋯與鈦金屬能使薄膜功函數有效地提升,但隨著載子濃度的增加功函數隨之下降。薄膜光電性質中以Zr 1.61 at. %及Ti 0.91 at.%之ZTZO薄膜具有4.18×10-3Ω-cm之最低電阻率以及在可見光穿透度為92%,其功函數為5.39 eV。薄膜光電性質中以Zr 3.46 at. %及Ti 0.71 at.%之ZTZO薄膜具有5.54×10-3Ω-cm之次低電阻率以及在可見光穿透度為91%,其功函數為5.51eV。於3.5 wt.%NaCl水溶液中由電化學法分析薄膜腐蝕特性發現:ZTZO薄膜中隨摻鋯量增加,其腐蝕電流密度減小,顯示抗蝕性增強。

Transparent conductive Zr, Ti codoped ZnO (ZTZO) films were prepared on glass substrate by three-target magnetron sputtering system in this work. The glass substrate was heated to 200°C, and the working pressure in the chamber was at 5 × 10-2 Torr. In the process of sputtering, the pure Ti target was bombarded by direct current varying in the power at 10, 20 and 30, the pure ZnO target were bombarded by radio frequency power fixed at 150 W and the pure Zr target were bombarded by radio frequency varying in the power at 0, 25, 50, 60, 75 and 100W, After sputtering for 120 minutes, the thickness of the films varying in Zr-contents was measured to be about 350 nm. The composition of ZTZO thin film was analyzed with inductively coupled plasma-mass spectrometer (ICP-MS) to show that the Zr-content increases with increasing the Zr power in the order: 0 at.% (0 W) < 1.61 at.% (25 W) < 2.76 at.% (50 W) < 3.46 at.% (60 W) < 3.82 at.% (75 W) < 6.12 at.% (100 W), and the Zr-content increases with increasing the Zr power in the order: 0 at.%(0 W) < 0.71 at.%(10 W) < 0.91 at.% (20 W) < 1.22 at.%(30 W). Through examination by X-ray photoelectron spectroscopy (XPS), the ZTZO films revealed TiO2 with binding energy of tetravalent Ti(IV) at 458.8 eV for Ti 2p3/2; ZrO2 with binding energy of tetravalent Zr(IV) at 182.2 and 184.5 eV for Zr 3d5/2 and 3d3/2, respectively. Analysis of X-ray diffraction (XRD) indicated that all the films belong to wurtzite structure textured on (002). The surface morphology and cross section of the films were examined by using field emission scanning electron microscope (FE-SEM). Through examination by atomic force microscopy (AFM), the films displayed their average surface roughness (Ra) decreased with increasing the Zr-dopant.
The carrier concentration of the films, determined by Hall effect analyzer, increased but the carrier mobility decreased with increasing the Zr-dopants so that the lowest resistivity was found at 5.54 × 10-3 Ω-cm for the ZTZO doped with 0.71 at.% Ti and 3.46 at.% Zr. Average optical transmittance of the films was analyzed higher than 90±5% by UV-vis spectra. Estimating by electrochemical measurements in 3.5 wt. % NaCl, the ZTZO films depicted their corrosion current density decreased with increasing the Zr-dopants. Therefore, ZTZOs with higher Zr-dopants were more resistant to corrosion. The features be found with the Zirconium content increase the corrosion current density is smaller, and enhanced corrosion resistance phenomenon.

目錄
摘要 i
Abstract ii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2研究動機 2
1-3 研究目的 3
1-4研究目標 4
第二章 原理與文獻回顧 5
2-1濺鍍沉積理論基礎 5
2-1-1濺射理論[15] 5
2-1-3濺鍍系統[15] 6
2-1-3-1直流式濺鍍 6
2-1-3-2射頻式濺鍍 7
2-1-3-3磁控濺鍍系統 8
2-1-4薄膜沉積原理[15] 8
2-1-4-1孕核(nucleation) 9
2-1-4-2晶粒成長(grain growth) 9
2-1-4-3晶粒聚集(coalescence) 10
2-1-4-4縫道填補(filling of channels) 10
2-1-4-5薄膜成長(film growth) 10
2-1-5鍍層微結構的Thornton模型 10
2-2氧化鋅薄膜性質 12
2-2-1氧化鋅薄膜特性[17][18] 12
2-2-2摻雜氧化鋅之能帶理論[19] 13
2-2-3氧化鋅薄膜晶體結構 14
2-2-4氧化鋅薄膜光學性質 14
2-3 氧化鋅文獻整理 15
2-3-1一元摻雜氧化鋅薄膜 15
2-3-2二元摻雜氧化鋅薄膜 16
第三章 實驗方法與儀器設備 17
3-1 實驗規劃 17
3-2 實驗步驟 17
3-2-1 試片清洗 17
3-2-2 磁控濺鍍薄膜製作參數設定 17
3-3 分析儀器 18
3-3-1感應耦合電漿質譜分析儀 18
3-3-2 場發式掃描式電子顯微鏡分析 20
3-3-3低掠角 X光結晶繞射分析 20
3-3-4 原子力顯微鏡分析 21
3-3-5 場發射鎗穿透式電子顯微鏡 21
3-3-6 試片表面化學元素鍵結能分析 22
3-3-7紫外光光電子能譜分析 22
3-3-8 表面電阻量測 23
3-3-9 薄膜載子濃度及霍爾移動率量測 23
3-3-9 UV-Visible 量測穿透率與經由光譜吸收計算能階(Eg) 24
3-4 電化學分析實驗 24
3-4-1 相對電極及參考電極 24
3-4-2電化學試驗環境 24
3-4-3 實驗流程及設置 24
3-4-4 電化學實驗方法 25
3-4-4-1 開路電位(Open circuit potential) 25
3-4-4-2 動態極化(Potentiodynamic polarization scanning) 25
3-4-4-3交流阻抗法(Electrochemical impedance spectroscopy) 25
第四章 實驗結果 27
4-1薄膜成分與結構分析 27
4-1-1薄膜成分分析 27
4-1-1-1感應耦合電漿質譜分析儀分析 27
4-1-1-1-1 TZO薄膜 27
4-1-1-1-2 ZZO薄膜 27
4-1-1-1-2 ZTZO薄膜 27
4-1-1-2 X光光電子能譜分析 28
4-1-1-2-1 TZO薄膜 28
4-1-1-2-2 ZZO薄膜 28
4-1-1-2-3 ZTZO薄膜 29
4-1-2表面形貌分析 30
4-1-2-1 場發式掃描式電子顯微鏡分析 30
4-1-2-1-1 TZO薄膜 30
4-1-2-1-2 ZZO薄膜 30
4-1-2-1-3 ZTZO薄膜 31
4-1-2-2 原子力顯微鏡分析 32
4-1-2-2-1 TZO薄膜 32
4-1-2-2-2 ZZO薄膜 32
4-1-2-2-3 ZTZO薄膜 33
4-1-3 晶體結構分析 34
4-1-3-1 低掠角 X光結晶繞射分析 34
4-1-3-1-1 TZO薄膜 34
4-1-3-1-2 ZZO薄膜 34
4-1-3-1-3 ZTZO薄膜 35
4-1-3-2場發射鎗穿透式電子顯微鏡分析 36
4-2薄膜性質與功能分析 37
4-2-1 薄膜電性分析霍爾量測儀 37
4-2-1-1 TZO薄膜 37
4-2-1-2 ZZO薄膜 37
4-2-1-3 ZTZO薄膜 37
4-2-2 薄膜可見光穿透率分析 39
4-2-2-1 TZO薄膜 39
4-2-2-2 ZZO薄膜 39
4-2-2-3 ZTZO薄膜 40
4-2-3 紫外光光電子能譜分析 41
4-2-3-1 TZO薄膜 41
4-2-3-2 ZZO薄膜 42
4-2-3-3 ZTZO薄膜 42
4-3電化學分析 43
4-3-1 腐蝕電位量測 43
4-3-2 塔佛曲線分析 44
4-3-3 交流阻抗分析 44
第五章 實驗討論 46
5-1不同元素摻雜對氧化鋅薄膜之影響 46
5-1-1成分與化學組態 46
5-1-2晶體結構特性 46
5-1-3導電特性 47
5-1-4光學特性 48
5-1-5功函數值比較 48
5-2鋯摻雜量對ZTZO薄膜之影響 49
5-2-1成分與化學組態 49
5-2-2晶體結構特性之影響 49
5-2-3導電特性之影響 49
5-2-4光學特性之影響 50
5-2-5功函數值之影響 51
5-2-6電化學特性之影響 51
第六章 結論 53
第七章 未來展望 55
參考文獻 56

[1] 楊明輝,“透明導電膜”, 藝軒圖書出版社, 2008年二月第一版
[2] 許國銓, ”科技玻璃-高性能透明導電玻璃”, 材料與社會, 84 期, (82),110-119.
[3] T. Homma, T. Ueno, K. Sekizawa, A. T.M. Hirata, J. Occup. Health 45 (2003) 137.
[4] J. Ma, J. Feng, Thin Solid Films, 279 (1996) 213.
[5] T. Minami, H. Sato, H. Nanto , Jpn. J.Appl. Phy., 24 (1985) L781.
[6] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”,Institute of Physics Publishing, Bristol, 1995.
[7] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J.-h. Jeong, B. Cheong, Thin Solid Films 515 (2006)1364.
[8] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Ma¨kinen, Z.H. Kafafi, D.B. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420 –421 539–543 (2002)
[9] C.-S. Wu, B.-T. Lin, M.-D. Jean,” Improving the conductance of ZnO thin films by doping with Ti,” Thin Solid Films 447 – 448 (2004) 56–60
[10] S. Suwanboon, and P. Amornpitoksuk, “Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties,” Procedia Engineering 32 (2012) 821 – 826
[11] J. F. Cordaro, “Interpretation of the optical absorption by indium ions in zinc oxide,” Physica B 183 (1993) 303-311
[12] S.D. Kirby, R.B. Van Dover, Thin Solid Films, 517, 1958–1960 (2009).
[13] S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films, 434, 14–19 (2003).
[14] W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Current Applied, 12,628-631 (2012)
[15] 田民波, 顏怡文, “薄膜技術與薄膜材料,” 五南圖書出版股份有限公司, 2009年第二版
[16] H. Kashani, “ The signification of parallel electric field on thepreferred orientation and surface morphology of ZnO thin films”,Journal of Material Science Letters, 18(1999)1043-1045. (1983).
[17] 張坤榮。「摻雜鋁於氧化鋅透明導電膜之光特性與電特性研究」。國立中央大學光電科學研究所碩士論文。2004 年7 月。
[18] 張榮宗。「氨在高週波電漿系統中反應之研究」。嘉南藥理科技大學環境工程與科學系碩士論文。2005 年7 月
[19] 陳金嘉, 黃俊達, 楊奇達, 楊國輝, 雷伯勳編譯, “光電半導體元件,” 全威圖書有限公司, 2013年第一版
[20] M. Lv , X. Xiu , Z. Pang , Y. Dai , L. Ye, “Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering,” Thin Solid Films 516 (2008) 2017–2021
[21] 林素霞。「氧化鋅薄膜的特性改良及應用之研究」。國立成功大學材料科學及工程研究所博士論文。2003 年11 月。
[22] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA,(1991)509-514.
[23] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev.,93(1954)632-633.
[24] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Phys. Soc. London Sect. B, 67(1954)775-782.
[25] H.W Lee, S.P Lau, Y.G Wang, K.Y Tse, H.H Hng, B.K Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” Journal of Crystal Growth 268 (2004) 596–601
[26] T. Minami, H. Nanto, S. Takata, “Highly conductive and transparent ZnO thin films prepared by r.f. magnetron sputtering in an applied external d.c. magnetic field,” Thin Solid Films, 124 (1985) 43-47
[27] Y.-M. Lu, C.-M. Chang, S.-I Tsai, T.-S. Wey, “Improving the conductance of ZnO thin films by doping with Ti,” Thin Solid Films 447 – 448 (2004) 56–60
[28] 11. S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films, 434, 14–19 (2003).
[29] 12. W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Current Applied, 12,628-631 (2012)
[30] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray photoelectron Spectroscopy, Physical Electronics, Inc., Minnesota U.S.A., 1992
[31] I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, "Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles," Optical Materials 35 (2013) 1189–1193
[32] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Springer ScienceþBusiness Media, 2009
[33] R.J. Hong, X. Jiang, Appl. Phys. A 84, 161-164 (2006)
[34] J.-L. Chung, J.-C.n Chen, C.-J. Tseng, "Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering," Journal of Physics and Chemistry of Solids 69 (2008) 535–539
[35] W.-H. Kim, W. J. Maeng, M.-K. Kim, H. Kim, "Low Pressure Chemical Vapor Deposition of Aluminum-Doped Zinc Oxide for Transparent Conducting Electrodes," Journal of The Electrochemical Society, 158 (8) D495-D499 (2011)
[36] 彭彥均,"AZO與ITO等透明導電氧化薄膜之電化學行為",碩士論文,國立中央大學機械工程學系,民國96年。
[37] S.-S. Lin, J.-L. Huang, D.-F. Lii, "Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering," Materials Chemistry and Physics 90 (2005) 22–30
[38] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, "Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering," Thin Solid Films 516 (2008) 2017–2021
[39] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, S. P. Singh, "Recent advances in ZnO nanostructures and thin films for biosensor applications: Review," Analytica Chimica Acta 737 (2012) 1–21
[40] Z. Y. Zhong, T. Zhang, "Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering," Materials Letters 96 (2013) 237–239
[41] H. Zhang, H. Liu, L. Feng, "Influence of annealing temperature on the properties of ZnO:Zr films deposited by direct current magnetron sputtering," m 84 (2010) 833–836
[42] A. Maldonado, S. Tirado-Guerra, M. de la L. Olvera, "Chemically sprayed ZnO:(F, Zr) thin films: Effect of starting solution ageing time and substrate temperature on the physical properties," Journal of Physics and Chemistry of Solids 70 (2009) 571–575
[43] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, "Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering," Thin Solid Films 516 (2008) 2017–2021
[44] J.-L. Chung, J.-C. Chen, C.-J. Tseng, “Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering,” Journal of Physics and Chemistry of Solids 69 (2008) 535–539
[45] E. Burstein, Phys. Rev. 93 (1954) 632
[46] T. S. Moss, Proc. Phys. Soc. London Sect. B 67 (1954) 775
[47] 張國慶, “佈植矽離子與佈植氮離子於氧化鋅膜之特性分析及氧化鋅膜與金屬的歐姆接觸研究”,碩士論文,國立中央大學光電科學研究所,民國93年。
[48] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi, D.B. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420 – 421 (2002) 539–543
[49] Y. Gui, S. Li, J. Xu, C. Li, "Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature," Microelectronics Journal 39 (2008) 1120–1125
[50] M. Lv, X. Xiu, Z. Pang, Y. Dai, S. Han, “Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering,” Applied Surface Science 252 (2006) 5687–5692
[51] 吳建男, “氧化鋅摻雜3.5 at.% 鋁與0.00、0.59、1.35、2.36 at.% 鈦濺鍍薄膜之結構與特性分析研究,”碩士論文,國立中央大學機械工程學系,民國100年。
[52] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, "Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering," Thin Solid Films 516 (2008) 2017–2021
[53] Y.-M. Lu, C.-M. Chang, S.-I Tsai, T.-S. Wey, “Improving the conductance of ZnO thin films by doping with Ti,” Thin Solid Films 447 – 448 (2004) 56–60
[54] H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerioune, J. C. Bernède, H. Bendjffal, "Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP)," Superlattices and Microstructures 52 (2012) 594–604
[55] 伍秀菁, 汪若文編譯, “奈米檢測技術,” 國家實驗研究院儀器科技研究中心發行, 2009年初版
[56] C. Wang, M. Zinkevich, F. Aldinger, "On the thermodynamic modeling of the Zr–O system," Computer Coupling of Phase Diagrams and Thermochemistry 28 (2004) 281–292
[57] D. R. Gaskell, “Introduction to the Thermodynamics of Materials,” Taylor & Francis, Fifth Edition, 2008

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top