一、中文部分
李東風、孫山澤、陳家鼎(1996)。數理統計學。臺北市:五南。
吳喜之、謝邦昌(2002)。現代貝氏統計學及其應用。臺北市:台灣知識庫。
周子敬(2006)。結構方程模式(SEM)-精通LISREL。臺北市:全華。
周子敬(2010)。SAS在統計學的應用。臺北市:五南。
邱皓政(2006)。結構方程模式:LISREL的理論、技術與應用。臺北市:雙葉。
姚開屏(2000)。台灣版世界衛生組織生活品質問卷之發展簡介。中華衛誌,19(4),315-324。
姚開屏(2001)。台灣簡明版世界衛生組織生活品質問卷之發展及使用手冊。黃素微(2005)。台灣簡明版世界衛生組織生活品質問卷之效度再探(未出版之碩士論文)。國立臺北師範學院,臺北市。二、英文部分
Albert, J. H., and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association,88, 669–679.
Ansari, A., and Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475–498.
Ansari, A., Jedidi, K., and Dube, L. (2002). Heterogeneous factor analysis models: A Bayesian approach. Psychometrika, 67, 49–78.
Ansari, A., Jedidi, K., and Jagpal, S. (2000). A hierarchical Bayesian methodology for treating heterogeneity in structural equation models. Marketing Science, 19, 328–347.
Bartholomew, D. J. (1981). Posterior analysis of the factor model. British, Journal of Mathematics and Statistical Psychology, 34, 93–99.
Berger, J. O. (1985). Statistical decision theory and Bayesian analysis, New York: Springer-Verlag.
Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis model. In K. G. Jörkog and H. Wold (eds), System under Indirect Observation: Causality, Structure, Prediction pp. 149–173. Amsterdam: North-Holland.
Box, G. E. P., and Tiao, G. C. (1973). Bayesian inference in statistical analysis, Reading, MA: Addison-Wesley.
Broemeling, L. D. (1985). Bayesian analysis of linear models. New York: Marcel Dekker Inc.
Chou, C. P., Bentler, P. M., and Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347–357.
Congdon, P. (2003). Applied Bayesian modeling. Hoboken, New York: John Wiley & Sons, Inc.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.
Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society, Series B, 62, 355–366.
Fuller, W. A. (1987). Measurement error models. New York: John Wiley & Sons, Inc.
Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.
Gelman, A. (1996). Inference and monitoring convergence, In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (eds), Markov Chain Monte Carlo in Practice, 131–144. London: Chapman and Hall.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall Ltd.
Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7, 473–511.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–109.
Hoogland, J. J., and Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta analysis. Sociological Methods & Research, 26, 329–368.
Hu, L., Bentler, P. M., and Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted. Psychological Bulletin, 112, 351–362.
Jöreskog, K. G., and Sörbom, D. (1996). LISREL 8: Structural equation modeling with the SIMPLIS command language. Hove and London: Scientific Software International.
Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.
Lawson, A. B., Browne, W. J., and Vidal Rodeiro, C. L. (2003). Disease mapping with WinBUGS and MLWIN. Cluchester: John Wiley & Sons, Ltd.
Lee, S. Y. (1980). Estimation of covariance structure models with parameters subject to functional restraints. Psychometrika, 45, 309–324.
Lee, S. Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153–160.
Lee, S. Y., and Shi, J. Q. (2000). Joint Bayesian analysis of factor scores and structural parameters in the factor analysis model. Annals of the Institute of Statistical mathematics, 52, 722–736.
Lee, S. Y., and Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653–686.
Lee, S. Y., and Zhu, H. T. (1999). Statistical analysis of nonlinear factor analysis models. British Journal of Mathematical and Statistical Psychology, 52, 225–242.
Lindley, D. V., and Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society, Series B, 1–42.
Martin, J. K., and McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heyword cases. Psychometrika, 40, 505–577.
Metropolis, N. et al. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091.
Muirhead, R. J. (1982). Aspects of multivariate statistical theory. New York: John Wiley & Sons, Inc..
Rubin, D. B. (1991). EM and beyond. Psychometrika, 56, 241–254.
Scheines, R., Hoijtink, H., and Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52.
Shi, J. Q., and Lee, S. Y. (1998). Bayesian sampling-based approach for factor analysis model with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 51, 233–252.
Song, X. Y., and Lee, S. Y. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. British Journal of Mathematical and Statistical Psychology, 54, 237–263.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Journal of the RoyalStatistical Society B, 64, 583.
Spiegelhalter, D. J., Thomas, A., Best, N. G., and Lunn, D. (2003). WinBUGS User Manual. Version 1.4. Cambridge, England: MRC Biostatistics Unit.
Tanner, M. A. and Wong, W. H. (1987) The calculation of posterior distributions by data augmentation(with discussion). Journal of the American Statistical Association, 82, 528–550.
Tanner, M. A., and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation(with discussion). Journal of the American Statistical Association, 82, 528–550.
Yung, Y. F., and Bentler, P. M. (1994). Bootstrap-corrected ADF test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 47, 63–84.
Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association, 86, 79–86.
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York, NY: John Wiley & Sons, Inc.