跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊佳榮
研究生(外文):Yang, Chia-Rong
論文名稱:模擬退火、基因演算、與類神經網路於震測速度選取之研究
論文名稱(外文):Simulated Annealing, Genetic Algorithm, and Neural Network for Seismic Velocity Picking
指導教授:黃國源黃國源引用關係
指導教授(外文):Huang, Kou-Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:132
中文關鍵詞:模擬退火演算法基因演算法霍普菲爾類神經網路最佳化速度選取動態修正共中點疊加
外文關鍵詞:simulated annealinggenetic algorithmHopfield neural networkoptimizationvelocity pickingnormal move-out correctionstacking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
速度選取是震測資料處理中的一個重要步驟,即在時間與速度的semblance圖中挑選出適當的時間與速度序對 (time-velocity pairs) 來表示地層間時間與速度的關係函式。傳統藉由地球物理專家進行速度選取的方法過程耗時,因此吾人把速度選取轉化為組合最佳化問題,即從區域峰值點的集合中尋找一個代表最佳折線的組合。我們建立能量的目標函式,此函式包括被選取點的semblance (energy) 總和,及限制條件,包含選取點的數量、間隔速度 (interval velocity)、速度斜率 (velocity slope) 的限制,我們利用三種最佳化演算法包含模擬退火、基因演算、與霍普菲爾類神經網路求取目標函式的最佳化,來尋找一個由峰值點的集合所組成的最佳折線,即最佳時間與速度的關係函式。
在模擬退火過程中,每一次的系統隨機狀態代表一個解,而具較高能量的新系統隨機狀態有一定的機率被接受。系統降溫後的最低能量狀態即為所求最佳折線,是一個全域的最佳解。在基因演算中,每一個個體代表一個解,數個個體會演化數個世代。最後一個世代中最高適應值個體即為所求最佳折線,也是一個全域最佳解。在霍普菲爾網路中,系統狀態代表一個解。我們由能量的目標函式推導得出系統的運動方程式,藉由非同步更新使能量下降到最後網路收斂,並到達一個代表最佳折線的穩定狀態。在基因演算,我們求目標函式的最大值。在模擬退火與霍普菲爾類神經網路為求目標函式的最小值,故在實作時我們對目標函式轉為負數,而求最小值。
在模擬退火與基因演算法的參數設定中,我們藉由循序式的每次決定一個參數的數值,找出最佳的參數。我們有模擬與實際的震測資料的實驗,我們使用模擬的二十二個同中點的震測圖(commom midpoint gather)與實際的Nankai的十五個同中點的震測圖做實驗。我們將所得到的折線與人工選取的折線計算誤差,作為結果評量指標,結果顯示在模擬與實際的震測資料中,基因演算法都能有最好的結果。另外,我們將三種方法所得到的最佳化折線進一步運用於動態修正(normal move-out correction)及共中點疊加(stacking),結果顯示由三種方法所得的最佳化折線皆能強化模擬與實際的震測資料的訊號。我們的速度選取最佳化的研究有助於震測資料的進一步處理與解釋。

Velocity picking is an important step for seismic data processing. It is to pick several time-velocity pairs forming a polyline in a semblance image to represent the time and velocity relation in layers. Conventionally the geophysicists did it, but it took much time. We transfer it to a combinatorial problem which is finding the best combination from the set of candidate points. We define an objective function of energy that includes total semblance value of picked points, and constraints on the number of picked points, interval velocity, and velocity slope. We adopt three optimization methods: simulated annealing (SA), genetic algorithm (GA), and Hopfield neural network (HNN), to find the optimal solution of objective function and obtain the best polyline consisting of picked peak points respectively.
In SA, the random system state represents a solution, and the higher energy random system state has a certain probability to be accepted and skip the local minimum. After annealing, the lowest energy system state is the best polyline. It is a global optimal solution. In GA, an individual represents a solution. Several individuals evolve many generations. The highest fitness individual in the last generation is the best polyline. It is also a global optimal solution. In HNN, the neurons of network represent a solution. We derive the equation of motion from the objective function and use asynchronous updating to renew the neurons of network. Finally, the network converges. The stable network state represents the best polyline. In GA, we find the maximum of the objective function. In SA and HNN, we find the minimum of the objective function. In the implementations of SA and HNN, we change the objective function to a negative function and find the minimum.
In the parameter settings of SA and GA, we find the best parameter settings by sequential method. We have experiments on simulation data and Nankai real seismic data. We have 22 common midpoint gathers (CMP gathers) of simulated seismic data and 15 CMP gathers of Nankai real seismic data for experiments. We evaluate the performance by comparing the mean difference between the picking result of each adopted method and that of human. The experiments show that GA has the best result on the simulated and real seismic data experiments. The best picking results by three methods are further used to do normal move-out (NMO) correction and stacking. The results show that both of the signals of the simulated and real seismic data are enhanced. The results of velocity picking by three optimization methods will be helpful for further seismic data processing and interpretation.

摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables ix
1. Introduction 1
1.1 Statement of the Problem 1
1.2 Literature Review 2
1.3 Proposed Methods and System 4
1.4 Organization of the Thesis 6
2. Introduction to Seismic Velocity Picking 8
2.1 Seismic Data Acquisition 9
2.2 CMP Gathers 13
2.3 Normal Move-out Correction 14
2.4 Velocity Analysis 21
2.5 Stacking 27
3. Velocity Picking by Proposed Methods 30
3.1 Local Peak Detection 30
3.2 Representation of the Velocity Picking Problem 30
3.3 Objective Function 32
3.4 Implementation of Velocity Picking by Each Proposed Method 41
3.4.1 Implementation of Velocity Picking by SA 41
3.4.2 Implementation of Velocity Picking by GA 46
3.4.3 Implementation of Velocity Picking by HNN 51
4. Experiments on Simulation Data 74
4.1 Introduction to Simulation Data 74
4.2 Window Size for Local Peak Detection and Candidate Point Number Q 78
4.3 Constant Setting for the Objective Function 79
4.4 Performance Evaluation 83
4.5 Simulation Data Experiments of Velocity Picking by SA 84
4.5.1 Determination of Best Parameters in SA by Sequential Method 84
4.5.2 Experimental Results of Velocity Picking by SA 87
4.6 Simulation Data Experiments of Velocity Picking by GA 91
4.6.1 Determination of Best Parameters in GA by Sequential Method 91
4.6.2 Experimental Results of Velocity Picking by GA 94
4.7 Simulation Data Experiments of Velocity Picking by HNN 97
4.8 Comparison of Three Methods in Simulation Data 100
5. Experiments on Real Seismic Data 102
5.1 Introduction to Real Seismic Data 102
5.2 Window Size for Local Peak Detection and Candidate Point Number Q 105
5.3 Constant Setting for the Objective Function 106
5.4 Real Data Experiments of Velocity Picking by SA 108
5.4.1 Determination of Best Parameters in SA by Sequential Method 108
5.4.2 Experimental Results of Velocity Picking by SA 110
5.5 Real Data Experiments of Velocity Picking by GA 114
5.5.1 Determination of Best Parameters in GA by Sequential Method 114
5.5.2 Experimental Results of Velocity Picking by GA 116
5.6 Real Data Experiments of Velocity Picking by HNN 120
5.7 Comparison of Three Methods in Nankai Real Data 124
6. Conclusions and Discussions 128
6.1 Conclusions 128
6.2 Discussions 129
7. References 130

[1] D. Whitley, J. R. Beveridge, and C. Ross, "Automated velocity picking: a computer vision and optimization approach," Technical Report CS-98-114, Computer Science Department, Colorado State University, 1998.
[2] J. E. Beitzel and J. M. Davis, "A computer oriented velocity analysis interpretation technique," Geophysics, vol. 39, pp. 619-632, 1974.
[3] J. Schmidt and F. A. Hadsell, "Neural network stacking velocity picking," SEG Technical Program Expanded Abstracts, vol. 11, pp. 18-21, 1992.
[4] B. C. Fish and T. Kusuma, "A neural network approach to automate velocity picking," SEG Technical Program Expanded Abstracts, vol. 13, pp. 185-188, 1994.
[5] J. R. Beveridge, C. Ross, D. Whitley, and B. Fish, "Augmented geophysical data interpretation through automated velocity picking in semblance velocity images," Machine Vision and Applications, vol. 13, pp. 141-148, 2002.
[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
[7] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines," The Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
[8] V. Černý, "Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm," Journal of Optimization Theory and Applications, vol. 45, pp. 41-51, 1985.
[9] S. Kundu, M. Mahato, B. Mahanty, and S. Acharyya, "Comparative performance of simulated annealing and genetic algorithm in solving nurse scheduling problem," Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 96-100, 2008.
[10] K. Y. Huang and K. J. Chen, "Simulated annealing for pattern detection and seismic applications," Journal of Information Science and Engineering, vol. 25, pp. 793-805, 2009.
[11] K. Y. Huang and Y. H. Hsieh, "Very fast simulated annealing for pattern detection and seismic applications," International Geoscience and Remote Sensing Symposium (IGARSS), pp. 499-502, 2011.
[12] J. H. Holland, Adaptation in natural and artificial systems. Michigan: University of Michigan Press, 1975.
[13] J. H. Holland, "Genetic algorithms," Scientific American, vol. 267, pp. 66-72, 1992.
[14] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing: SpringerVerlag, 2003.
[15] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, "Genetic algorithms for the traveling salesman problem: a review of representations and operators," Artif. Intell. Rev., vol. 13, pp. 129-170, 1999.
[16] M. Aurnhammer and K. D. Tonnies, "A genetic algorithm for automated horizon correlation across faults in seismic images," Evolutionary Computation, IEEE Transactions, vol. 9, pp. 201-210, 2005.
[17] H. Liangjie, L. Shiliang, and R. P. Bording, "A computational engine for petroleum applications using genetic algorithms," Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 245-250, 2008.
[18] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences, vol. 79, pp. 2554-2558, 1982.
[19] J. J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons," Proceedings of the National Academy of Sciences, vol. 81, pp. 3088-3092, 1984.
[20] J. J. Hopfield and D. W. Tank, "“Neural” computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.
[21] J. Y. Potvin, "The traveling salesman problem: a neural network perspective," ORSA Journal on Computing, vol. 5, pp. 328-347, 1993.
[22] J. Mańdziuk, "Solving the n-queens problem with a binary Hopfield-type network," Biological Cybernetics, vol. 72, pp. 439-445, 1995.
[23] T. Munakata, Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More: Springer, 2008.
[24] K. Y. Huang, "Neural network for seismic horizon picking," International Joint Conference on Neural Networks Proceedings, vol. 3, pp. 1840-1844, 1998.
[25] Ö. Yilmaz and S. M. Doherty, Seismic data processing: Society of Exploration Geophysicists, 1987.
[26] Ö. Yilmaz and S. M. Doherty, Seismic data analysis: processing, inversion, and interpretation of seismic data: Society of Exploration Geophysicists, 2001.
[27] J. K. Cohen and J. J. W. Stockwell, "CWP/SU: Seismic Un*x," 43R3 ed: Center for Wave Phenomena, Colorado School of Mines, 2008.
[28] J. W. Stockwell, "The CWP/SU: Seismic Unix package," Computers &; Geosciences, vol. 25, pp. 415-419, 1999.
[29] W. A. Schneider, "The common depth point stack," Proceedings of the IEEE, vol. 72, pp. 1238-1254, 1984.
[30] C. H. Dix, "Seismic velocities from surface measurements," Geophysics, vol. 20, pp. 68-86, 1955.
[31] P. Kearey, M. Brooks, and I. Hill, An Introduction to Geophysical Exploration: Wiley, 2002.
[32] M. T. Taner, "Velocity spectra - digital computer derivation applications of velocity functions," Geophysics, vol. 34, 1969.
[33] Z. Y. Liao, "Simulated annealing and genetic algorithm for automatic velocity picking," Master Thesis, Institute of Multimedia, National Chiao Tung University, Hsinchu, 2012.
[34] Y. C. Y. (葉怡成), "Neural network model of the application and implementation (類神經網路模式應用與實作)," ninth ed: RuLin (儒林), 2009, pp. 10-1-10-18.
[35] M. B. Dobrin and C. H. Savit, Introduction to Geophysical Prospecting: McGraw-Hill Book Co., 1988.
[36] M. D. Sacchi, "SeismicLab," Department of Physics, University of Alberta, 2008.
[37] D. Forel, T. Benz, and W. D. Pennington, Seismic data processing with Seismic Un*x: a 2D seismic data processing primer: Society of Exploration Geophysicists, 2005.
[38] G. F. Moore, T. H. Shipley, P. L. Stoffa, D. E. Karig, A. Taira, S. Kuramoto, H. Tokuyama, and K. Suyehiro, "Structure of the Nankai trough accretionary zone from multichannel seismic reflection data," Journal of Geophysical Research, vol. 95, pp. 8753-8765, 1990.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊