|
1.Guy, G.R., R. Philip, and Y.H. Tan, Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells. Electrophoresis, 1994. 15(3-4): p. 417-40. 2.Johnson, L.N. and M. O'Reilly, Control by phosphorylation. Curr Opin Struct Biol, 1996. 6(6): p. 762-9. 3.Zhou, H., et al., Glycoproteomic reactor for human plasma. J Proteome Res, 2009. 8(2): p. 556-66. 4.Yang, Z. and W.S. Hancock, Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A, 2004. 1053(1-2): p. 79-88. 5.Turnbull, J.E. and R.A. Field, Emerging glycomics technologies. Nat Chem Biol, 2007. 3(2): p. 74-7. 6.Cobleigh, M.A., et al., Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol, 1999. 17(9): p. 2639-48. 7.Livingston, R.B. and F.J. Esteva, Chemotherapy and herceptin for HER2(+) metastatic breast cancer: the best drug? Oncologist, 2001. 6(4): p. 315-6. 8.Slamon, D.J., et al., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 2001. 344(11): p. 783-92. 9.Yang, Z., et al., Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem, 2006. 52(10): p. 1897-905. 10.Vercoutter-Edouart, A.S., et al., Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics, 2008. 8(16): p. 3236-56. 11.Zhang, Q.Y., et al., A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3378-83. 12.Ramsby, M.L., G.S. Makowski, and E.A. Khairallah, Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis, 1994. 15(2): p. 265-77. 13.Fazal, M.A., V.R. Palmer, and N.J. Dovichi, Analysis of differential detergent fractions of an AtT-20 cellular homogenate using one- and two-dimensional capillary electrophoresis. J Chromatogr A, 2006. 1130(2): p. 182-9. 14.Molloy, M.P., et al., Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis, 1998. 19(5): p. 837-44. 15.Bernocco, S., et al., Sequential detergent fractionation of primary neurons for proteomics studies. Proteomics, 2008. 8(5): p. 930-8. 16.Donoghue, P.M., et al., Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label-free LC-MS. Proteomics, 2008. 8(18): p. 3895-905. 17.Henry, R.R., Insulin resistance: from predisposing factor to therapeutic target in type 2 diabetes. Clin Ther, 2003. 25 Suppl B: p. B47-63. 18.Lee, W.J., et al., Effects of Obesity Surgery on Type 2 Diabetes Mellitus Asian Patients. World J Surg, 2009. 19.Zhang, M., et al., The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res, 2008. 2008: p. 704045. 20.Bellodi, C., et al., Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest, 2009. 119(5): p. 1109-23. 21.Johansen, P.G., R.D. Marshall, and A. Neuberger, Carbohydrates in protein. 3 The preparation and some of the properties of a glycopeptide from hen's-egg albumin. Biochem J, 1961. 78: p. 518-27. 22.Ohyama, Y., et al., Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J Biol Chem, 1985. 260(11): p. 6882-7. 23.Suzuki, N., et al., Isolation and characterization of major glycoproteins of pigeon egg white: ubiquitous presence of unique N-glycans containing Galalpha1-4Gal. J Biol Chem, 2001. 276(26): p. 23221-9. 24.Soper, A.S. and S.D. Aird, Elution of tightly bound solutes from concanavalin A Sepharose. Factors affecting the desorption of cottonmouth venom glycoproteins. J Chromatogr A, 2007. 1154(1-2): p. 308-18. 25.Kerjaschki, D., D.J. Sharkey, and M.G. Farquhar, Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol, 1984. 98(4): p. 1591-6. 26.Nakamura, T., et al., Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism, 2001. 50(10): p. 1193-6. 27.Pagtalunan, M.E., et al., Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest, 1997. 99(2): p. 342-8. 28.Srinivas, P.R., et al., Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol, 1993. 7(11): p. 1445-55. 29.Gil, G. and V. Esser, Cholesterol-mediated suppression of alpha 1-inhibitor III, a plasma alpha-macroglobulin family protein. J Biol Chem, 1991. 266(30): p. 20512-8. 30.Ix, J.H., et al., Fetuin-A and incident diabetes mellitus in older persons. Jama, 2008. 300(2): p. 182-8. 31.Mori, K., et al., Effects of pioglitazone on serum fetuin-A levels in patients with type 2 diabetes mellitus. Metabolism, 2008. 57(9): p. 1248-52. 32.Stefan, N., et al., Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes, 2008. 57(10): p. 2762-7. 33.Henschen-Edman, A.H., Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci, 2001. 936: p. 580-93. 34.de Maat, M.P., Effects of diet, drugs, and genes on plasma fibrinogen levels. Ann N Y Acad Sci, 2001. 936: p. 509-21. 35.Zhang, B., et al., Alpha1-antitrypsin protects beta-cells from apoptosis. Diabetes, 2007. 56(5): p. 1316-23. 36.Zhao, R. and I.D. Goldman, Resistance to antifolates. Oncogene, 2003. 22(47): p. 7431-57. 37.Grzelakowska-Sztabert, B., [Molecular mechanisms of cellular resistance to antifolates]. Postepy Biochem, 1983. 29(2): p. 167-90. 38.Diddens, H., D. Niethammer, and R.C. Jackson, Resistance of human tumor cell lines to antifolates. Cancer Treat Rev, 1984. 11 Suppl A: p. 37-41. 39.Rothem, L., et al., Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukaemia cell lines. Biochem J, 2002. 367(Pt 3): p. 741-50. 40.Wielinga, P., et al., The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res, 2005. 65(10): p. 4425-30. 41.Ida, J.B., N.K. Worley, and R.G. Amedee, Gold laser adenoidectomy: long-term safety and efficacy results. Int J Pediatr Otorhinolaryngol, 2009. 73(6): p. 829-31. 42.Giles, J.E., N.K. Worley, and N. Telusca, Gold laser tonsillectomy-A safe new method. Int J Pediatr Otorhinolaryngol, 2009. 43.Didelot, C., et al., Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol, 2006(172): p. 171-98. 44.Garrido, C., et al., Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 2001. 286(3): p. 433-42. 45.Chang, M.Y., et al., Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci, 2008. 99(7): p. 1479-84. 46.Carnemolla, A., et al., Rrs1 is involved in endoplasmic reticulum stress response in huntington disease. J Biol Chem, 2009. 284(27): p. 18167-73. 47.Reijonen, S., et al., Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res, 2008. 314(5): p. 950-60. 48.Wang, J.L., B.A. Cunningham, and G.M. Edelman, Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A, 1971. 68(6): p. 1130-4. 49.Bennett, P.H., et al., Increased urinary albumin excretion and its associations in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 2001. 44 Suppl 2: p. S37-45. 50.Keen, H. and C. Chlouverakis, Urinary Albumin Excretion and Diabetes Mellitus. Lancet, 1964. 2(7370): p. 1155-6. 51.De Cosmo, S., et al., Increased urinary albumin excretion, insulin resistance, and related cardiovascular risk factors in patients with type 2 diabetes: evidence of a sex-specific association. Diabetes Care, 2005. 28(4): p. 910-5. 52.Stehouwer, C.D., et al., Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes, 2002. 51(4): p. 1157-65. 53.Lunetta, M., et al., Increased urinary albumin excretion is a marker of risk for retinopathy and coronary heart disease in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract, 1998. 40(1): p. 45-51. 54.Townsend, J.C., Increased albumin excretion in diabetes. J Clin Pathol, 1990. 43(1): p. 3-8. 55.Berggren, P.O., et al., Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell, 2004. 119(2): p. 273-84. 56.Refai, E., et al., Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc Natl Acad Sci U S A, 2005. 102(47): p. 17020-5. 57.McDermott, M.F., et al., Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetologia, 1997. 40(8): p. 971-5. 58.Baynes, K.C., et al., Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia, 1997. 40(3): p. 344-7. 59.Wojcik, C., et al., Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol Biol Cell, 2006. 17(11): p. 4606-18. 60.Asai, T., et al., VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn J Cancer Res, 2002. 93(3): p. 296-304. 61.Brockstedt, E., et al., Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem, 1998. 273(43): p. 28057-64. 62.Byun, Y., et al., Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ, 2001. 8(5): p. 443-50. 63.Hong, C.C., et al., Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett, 2008. 268(2): p. 314-24. 64.Xiong, H., et al., Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia, 2008. 10(3): p. 287-97. 65.Azoitei, N., et al., Thirty-eight-negative kinase 1 (TNK1) facilitates TNFalpha-induced apoptosis by blocking NF-kappaB activation. Oncogene, 2007. 26(45): p. 6536-45. 66.Hoare, K., et al., Kos1, a nonreceptor tyrosine kinase that suppresses Ras signaling. Oncogene, 2003. 22(23): p. 3562-77. 67.Chau, C.H., et al., Etk/Bmx mediates expression of stress-induced adaptive genes VEGF, PAI-1, and iNOS via multiple signaling cascades in different cell systems. Am J Physiol Cell Physiol, 2005. 289(2): p. C444-54. 68.Scorrano, L., et al., BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003. 300(5616): p. 135-9. 69.Ruiz-Vela, A., et al., Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep, 2005. 6(4): p. 379-85. 70.Oakes, S.A., et al., Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A, 2005. 102(1): p. 105-10. 71.Radha, V., et al., Induction of cytochrome c release and apoptosis by Hck-SH3 domain-mediated signalling requires caspase-3. Apoptosis, 2002. 7(3): p. 195-207.
|