|
[1] Forrestal, M.J.; Hanchak, S.J., Young, E.R., Ehrgott,J.Q., 1992, “Perforation of concrete slabs with 48MPa(7ksi) and 140MPa(20ksi) unconfined compressive structures,” Int. J. Impact Eng.,12,pp.1-7, 1992. [2] Forrestal, M.J.;Luk, V.K., “penetration into soil targets,” Sandia National Laboratories, Albuquerque, NM 87185,U.S.A, 1991. [3] Forrestal, M.J.; Altman, B.S., Cargile, J.D., Hanchak, S.J., “ An empirical equation for penetration depth of ogive-nose projectiles into concrete targets,” Int. J. Impact Eng., 15, pp. 395-405, 1994. [4] Young, C.W., “ Penetration equations,” Contractor Report SAND97-2426, Sandia National Laboratories, 1997. [5] Lixin, Qian; Yunbin, Yang; Liu, Tong, “A semi-analytical model for truncated- ogive-nose projectiles penetration into semi-infinite concrete targets,” Int. J. Impact Eng., 24, pp. 947-955, 2000. [6] Forrestal, M.J., Frew, D.J., Hickerson J.P., Rohwer, T.A., “Penetration of concrete targets with deceleration-time measurements,” Int. J. Impact Eng.28, pp. 479-497, 2003. [7] Frew, D.J.; Forrestal, M.J.; Cargile, J.D., “The effect on concrete target diameter on projectile deceleration and penetration depth,” Int. J. Impact Eng., 32 pp.1584-1594, 2006 [8] Holmquist, T.J.; Johnson, G.R.; Cook, W.H., “A computational constitutive model for concrete subjected to large strain, high strain rates, and high pressures,” 14th International Symposium on Ballistics,591-600, 1993. [9] Chen, E.P., “Simulation of Concrete perforation Based on a Continuum Damage Model SAND94-0792C,” Sandia National Laboratories, New Mexico, U.S.A, January, 1994 [10]Taylor, L.M.; Chen, E.P.; Kuszmaul, J.S., “Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading,” Computer Methods Apply Mesh Engineer, Vol.55,301-320, 1986. [11] Agardh, L.; Laine, L., “3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs,” Int. J. Impact Eng., 22, pp. 911-922, 1999. [12] 時黨勇,李裕春,張勝民,高速彈丸侵徹混凝土靶版,基於 ANSYS/LS-DYNA8.1進行顯示動力分析,第三章,第二節,第151-165頁, 北京,2004 [13] Wang, Z.L.; Li, Y.C.; Shen, R.F.; Wang, J.G., “Numerical study on crater and penertration of concrete slab by ogive-nose steel projectile,” Computers and Geotechnics, 34, pp.1-9, 2007. [14] Tai, Y.S., “Numerical simulation:The dynamic behavior of reinforced concrete plates under normal impact,” Theoretical and Applied Fracture Mechanics,Vol.45,117-127, 2006 [15] Tham, C.Y., “Numerical and empirical approach in predicating the penetration of a concrete target by an ogive-nosed projectile,” Finite Element in Analysis and Design, 42, pp.1258-1268, 2006. [16] 韓麗,高世橋, “混凝土靶體尺寸對過載影響的數值研究”,北京理工大學學 報,第二十四卷,第六期,北京,2007。 [17] 王紀瑞,何奇洲,陳德煒,李建華, “彈體撞擊兩層隔板的動態分析”,彰雲 嘉大學校院聯盟學術研討會論文集,2008。 [18] 韓麗,高世橋, “彈丸垂直貫穿混凝土靶的數值研究”,北京理工大學學報, 第二十六卷,第十一期,第953-956業,北京,2006。 [19] LS-DYNA, “”Keyword User’s Manual Version 971,” Livemore Software Technology Corporation, 2006. [20] Gao, S.; Jin L.; Liu, H., 2004, “Dynamic response of a projectile perforating multi-plate concrete target,” Int. J. Solid and Structures, 41, PP.4927-4938. [21] Gran, J.K.; Frew, D.J., “In-target radial stress measurement from penetration experiments into concrete by ogive-nose steel projectiles,” Int. J. Impact Eng. 19(8), pp. 715-726, 1997. [22] Johnson,G.R.;Cook,W.H., “Fracture characteristics of three metals subjected to various strains, strain rates, temperature and pressure, Eng. Fracture. Mechanics,”21,pp.31-48, 1985. [23] Matuska, D.A., 1983, A model for high velocity penetration, Orlando Technology, Inc (1983). [24] O’Neil, E.F.; Neely, B.D.; , ”Tensile properties of very-high-strength concrete for penetration-resistant structures,” Shock & Vibration, 6, pp.237-245., 1999. [25] Unosson, M.; Nilsson, L., “Projectile penetration and perforation of high performance concrete: experimental results and macroscopic modeling,” Int. J. Impact Eng. 32, pp. 1068-71085. [26] Warren, T.L.; Fossum, A.F.; Frew, D.J., Penetration into low-strength (23MPa) concrete: targets characterization and simulation, Int. J. Impact Eng., 30(5), pp. 477-503, 2004. [27] Yaghoob Farnam,; Soheil Mohammadi,; Mohammad Shekarchi, “Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced based cement composite,” Int. J. Impact Eng., 37, 220-229, 2010. [28] Zhang, M.H.; Shim, V.P.W.; Lu, G.; Chew, C.W., “Resistance of high-strength concrete to projectile impact,” Int. J. Impact Eng. 31, pp. 825-841, 2005. [29] Zhang F.G.; Li, E.Z., “A computational model for concrete subjected to large strains, high strain rates, and high pressure, Explosion Shock Wave,” 22(3), pp.198-202, 2002. [30] 梁卓中、吳炳文,防護結構抗貫穿能力之研究方法,中華民國力學學會 會訊,第102 期專題報導,第1-13 頁,2003。 [31] 趙海鷗,LS-DYNA動力分析指南,兵器工業出版社,北京,2003。 [32] Robert L. Norton., “Machine Design An Integrated Approach,” 3rd Edition, Pearson Prentice Hall, Person Education Inc., Upper Saddle River, New Jersey, 2006. [33] 張鳳國,李恩征, “大應變、高應變率及高壓條件下混凝土的計算模 型”,爆炸與衝擊,第二十二卷,第三期,第198-202頁,北京,2002。 [34] Johanson M. Structural behavior inconcrete frame corners of civil defense shelter, non-linear finite element analysis and experiments Ph.D. Thesis. Goteborg, Sweden: Department of Structural Engineering, Chalmers University of Techology, 2000. [35] 門鑑兵, “網格對混凝土侵入數值模擬的影響” ,北京理工大學學報, 第二十五卷,第八期,第559-662頁,北京。2005。 [36] 劉雲飛,王天遠,蔣滄如, “彈體侵入混凝土深度計算公式分析” ,武漢理工大學學報,第二十六卷,第一期,武漢。2004 [37] Gregsson VG Jr, A shockwave study of Fondu-Frye WA-1 and a concrete, DNA2797F, February 1992. AFATL-TR-78-24-VOL., Appendix A, Concrete Constitutive Relations at high Strength Levels. US Army Armament Research and Development Command, Aberdeen, March, USA, 1978
|