跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧長軒
研究生(外文):Chang-Hsuan Lu
論文名稱:高速彈體貫穿混凝土靶體之動態分析
論文名稱(外文):Dynamic Response of Concrete Target subject to High Speed Projectile Penetration
指導教授:洪振發洪振發引用關係
口試委員:王偉輝梁卓中宋家驥
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:高速彈體貫穿衝擊
外文關鍵詞:LS-DYNApenetrationconcrete target
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以數值模擬方式,探討混凝土靶體受高速彈體撞擊下,所呈現的大應變、高應變率及高壓下之材料動態行為。數值模擬採用LS-DYNA有限元素分析軟體,並採用內建的兩種不同混凝土材料模型:Mat_Johnson_Holmquist_Concrete與Mat_Soil_Concrete來做數值模擬分析的比較。
首先建立合理的數值模型檢討三種參數:元素尺寸之收斂性分析,歸納出一個適合的λ(projectile radius/mesh size)值範圍,並討論時間步幅(t)與罰函數因子等參數對數值結果影響之比較,再與Hanchak實驗結果進行比較,以驗證數值分析模式之可靠性。此數值模型,再與撞擊深度經驗公式之結果比較,確認數值模擬能完整呈現混凝土之結構抗衝擊特性。最後針對混凝土的破壞模式來做一個分析與說明,探討不同網格尺寸對彈體撞擊混凝土之破壞模式之影響,並歸納出彈體貫穿混凝土靶體不同歷程下所呈現的破壞情形。
根據前述建立的數值模型,探討穿透彈體貫穿單層混凝土靶體與等厚度多層混凝土靶體情況下,其抗侵徹性能之差異性。研究結果顯示,本研究所建立之數值分析模型能有效預測混凝土大應變、高應變率及高壓情況下之動態反應與破壞型態。


In this study, numerical simulation methods to analysis the dynamic response of concrete subjected to penetration of high speed projectile. The effects of large strain, high strain rate and high pressure on the dynamic behavior have been investigated. The LS-DYNA finite element analysis software was used for numerical simulation, and the characteristic of two different models of concrete materials: Mat_Johnson_Holmquist_Concrete and Mat_Soil_Concrete were compared.
First, a reasonable numerical model was examined through three parameters: the effects of element size on the convergence of analysis result, a reasonable size parameter λ(projectile radius/mesh size) was summarized. The effect of time step size(t) and penalty stiffness factor(f_s) on the differences of numerical results have been discussed. Numerical analysis for Hanchak’s experiments was carried out, the results were compared with experiment results to verify the reliability of numerical models. The numerical model was above compared to empricial formula to predict the penetration depth to display the characteristic of concrete structure. Finally, we summarized the concrete’s failure model during the process of projectile penetration concrete target.
Finally, the difference of anti-penetration properties between the single concrete target and multiple concrete targets were investigated. The results show that the proposed numerical model can predict effectively the dynamic response and failure conditions under consideration of large strain, high strain rate and high pressure situations


口試委員會審定書 #
誌謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.2.1 實驗及經驗估算法 2
1.2.2 數值模擬法 4
1.3 本文內容 5
第二章 LS-DYNA理論介紹 7
2.1 Lagrangian及Eulerian描述法 7
2.2 時間積分法之選取 8
2.2.1 中央差分法 9
2.3 時間步幅之控制 10
2.4 元素型態 11
2.5 沙漏效應(Hourglass Effect) 12
2.6 接觸演算法與接觸類型 13
2.6.1 接觸演算法 13
2.6.2 接觸類型 15
第三章 材料侵蝕破壞準則與材料模型說明 17
3.1 材料結構受衝擊損傷基本理論 17
3.1.1 高速衝擊現象與影響 20
3.1.2 高速衝擊對介質之作用 20
3.2 材料失效與侵蝕效應 21
3.2.1 材料失效準則 21
3.2.2 侵蝕效應 25
3.4 混凝土材料模型介紹 26
3.4.1 Soil_Concrete_Model 27
3.4.2 Johnson_Holmquist_Concrete Model 29
第四章 模擬流程與模型建立 33
4.1 分析流程 33
4.2 模型建立 34
4.2.1 實驗模型概述 34
4.2.2 彈體及靶體有限元素模型建立 36
4.3 材料模型參數設定 37
4.3.1 Soil_Concrete材料參數設定 37
4.3.2 Johnson_Holmquist_Concrete材料參數設定 38
4.3.2 彈體材料參數設定 39
4.3.4 接觸模式與邊界條件設定 40
4.3.5 沙漏效應控制設定 42
4.4 混凝土之衝擊深度經驗公式介紹 42
第五章 數值模擬結果分析與討論 47
5.1 合理數值模型驗證 47
5.1.1 網格尺寸之收斂性 47
5.1.2 時間步幅之收斂性 50
5.1.3 罰函數因子探討 52
5.2 混凝土衝擊深度經驗公式驗證 56
5.3 混凝土靶體之破壞型態驗證 62
5.3.1 不同網格尺寸對混凝土靶體破壞型態之影響 62
5.3.2 混凝土破壞模式探討 65
第六章 彈體撞擊多層間隔混凝土靶體之抗撞性能分析 71
6.1 模型建立 71
6.2 彈體與靶體材料模型 72
6.3 接觸定義與邊界條件設定 72
6.4 彈體撞擊多層且有間隔靶體之數值模擬結果 73
第七章 結論與展望 79
7.1 結果與討論 79
7.2 未來展望 80
參考文獻 81


[1] Forrestal, M.J.; Hanchak, S.J., Young, E.R., Ehrgott,J.Q., 1992, “Perforation of
concrete slabs with 48MPa(7ksi) and 140MPa(20ksi) unconfined compressive structures,” Int. J. Impact Eng.,12,pp.1-7, 1992.
[2] Forrestal, M.J.;Luk, V.K., “penetration into soil targets,” Sandia National Laboratories, Albuquerque, NM 87185,U.S.A, 1991.
[3] Forrestal, M.J.; Altman, B.S., Cargile, J.D., Hanchak, S.J., “ An empirical
equation for penetration depth of ogive-nose projectiles into concrete targets,” Int. J. Impact Eng., 15, pp. 395-405, 1994.
[4] Young, C.W., “ Penetration equations,” Contractor Report SAND97-2426, Sandia National Laboratories, 1997.
[5] Lixin, Qian; Yunbin, Yang; Liu, Tong, “A semi-analytical model for truncated- ogive-nose projectiles penetration into semi-infinite concrete targets,” Int. J. Impact Eng., 24, pp. 947-955, 2000.
[6] Forrestal, M.J., Frew, D.J., Hickerson J.P., Rohwer, T.A., “Penetration of
concrete targets with deceleration-time measurements,” Int. J. Impact Eng.28, pp. 479-497, 2003.
[7] Frew, D.J.; Forrestal, M.J.; Cargile, J.D., “The effect on concrete target
diameter on projectile deceleration and penetration depth,” Int. J. Impact Eng., 32
pp.1584-1594, 2006
[8] Holmquist, T.J.; Johnson, G.R.; Cook, W.H., “A computational constitutive model for concrete subjected to large strain, high strain rates, and high pressures,” 14th International Symposium on Ballistics,591-600, 1993.
[9] Chen, E.P., “Simulation of Concrete perforation Based on a Continuum Damage Model SAND94-0792C,” Sandia National Laboratories, New Mexico, U.S.A, January, 1994
[10]Taylor, L.M.; Chen, E.P.; Kuszmaul, J.S., “Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading,” Computer Methods Apply Mesh Engineer, Vol.55,301-320, 1986.
[11] Agardh, L.; Laine, L., “3D FE-simulation of high-velocity fragment perforation of
reinforced concrete slabs,” Int. J. Impact Eng., 22, pp. 911-922, 1999.
[12] 時黨勇,李裕春,張勝民,高速彈丸侵徹混凝土靶版,基於
ANSYS/LS-DYNA8.1進行顯示動力分析,第三章,第二節,第151-165頁,
北京,2004
[13] Wang, Z.L.; Li, Y.C.; Shen, R.F.; Wang, J.G., “Numerical study on crater and
penertration of concrete slab by ogive-nose steel projectile,” Computers and
Geotechnics, 34, pp.1-9, 2007.
[14] Tai, Y.S., “Numerical simulation:The dynamic behavior of reinforced concrete
plates under normal impact,” Theoretical and Applied Fracture
Mechanics,Vol.45,117-127, 2006
[15] Tham, C.Y., “Numerical and empirical approach in predicating the penetration of a
concrete target by an ogive-nosed projectile,” Finite Element in Analysis and
Design, 42, pp.1258-1268, 2006.
[16] 韓麗,高世橋, “混凝土靶體尺寸對過載影響的數值研究”,北京理工大學學
報,第二十四卷,第六期,北京,2007。
[17] 王紀瑞,何奇洲,陳德煒,李建華, “彈體撞擊兩層隔板的動態分析”,彰雲
嘉大學校院聯盟學術研討會論文集,2008。
[18] 韓麗,高世橋, “彈丸垂直貫穿混凝土靶的數值研究”,北京理工大學學報,
第二十六卷,第十一期,第953-956業,北京,2006。
[19] LS-DYNA, “”Keyword User’s Manual Version 971,” Livemore Software
Technology Corporation, 2006.
[20] Gao, S.; Jin L.; Liu, H., 2004, “Dynamic response of a projectile perforating
multi-plate concrete target,” Int. J. Solid and Structures, 41, PP.4927-4938.
[21] Gran, J.K.; Frew, D.J., “In-target radial stress measurement from penetration
experiments into concrete by ogive-nose steel projectiles,” Int. J. Impact Eng.
19(8), pp. 715-726, 1997.
[22] Johnson,G.R.;Cook,W.H., “Fracture characteristics of three metals subjected to
various strains, strain rates, temperature and pressure, Eng. Fracture.
Mechanics,”21,pp.31-48, 1985.
[23] Matuska, D.A., 1983, A model for high velocity penetration, Orlando Technology,
Inc (1983).
[24] O’Neil, E.F.; Neely, B.D.; , ”Tensile properties of very-high-strength concrete for
penetration-resistant structures,” Shock & Vibration, 6, pp.237-245., 1999.
[25] Unosson, M.; Nilsson, L., “Projectile penetration and perforation of high
performance concrete: experimental results and macroscopic modeling,” Int. J.
Impact Eng. 32, pp. 1068-71085.
[26] Warren, T.L.; Fossum, A.F.; Frew, D.J., Penetration into low-strength (23MPa) concrete: targets characterization and simulation, Int. J. Impact Eng., 30(5), pp. 477-503, 2004.
[27] Yaghoob Farnam,; Soheil Mohammadi,; Mohammad Shekarchi, “Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced based cement composite,” Int. J. Impact Eng., 37, 220-229, 2010.
[28] Zhang, M.H.; Shim, V.P.W.; Lu, G.; Chew, C.W., “Resistance of high-strength concrete to projectile impact,” Int. J. Impact Eng. 31, pp. 825-841, 2005.
[29] Zhang F.G.; Li, E.Z., “A computational model for concrete subjected to large
strains, high strain rates, and high pressure, Explosion Shock Wave,” 22(3),
pp.198-202, 2002.
[30] 梁卓中、吳炳文,防護結構抗貫穿能力之研究方法,中華民國力學學會
會訊,第102 期專題報導,第1-13 頁,2003。
[31] 趙海鷗,LS-DYNA動力分析指南,兵器工業出版社,北京,2003。
[32] Robert L. Norton., “Machine Design An Integrated Approach,” 3rd Edition,
Pearson Prentice Hall, Person Education Inc., Upper Saddle River, New Jersey,
2006.
[33] 張鳳國,李恩征, “大應變、高應變率及高壓條件下混凝土的計算模
型”,爆炸與衝擊,第二十二卷,第三期,第198-202頁,北京,2002。
[34] Johanson M. Structural behavior inconcrete frame corners of civil defense
shelter, non-linear finite element analysis and experiments Ph.D. Thesis.
Goteborg, Sweden: Department of Structural Engineering, Chalmers
University of Techology, 2000.
[35] 門鑑兵, “網格對混凝土侵入數值模擬的影響” ,北京理工大學學報,
第二十五卷,第八期,第559-662頁,北京。2005。
[36] 劉雲飛,王天遠,蔣滄如, “彈體侵入混凝土深度計算公式分析” ,武漢理工大學學報,第二十六卷,第一期,武漢。2004
[37] Gregsson VG Jr, A shockwave study of Fondu-Frye WA-1 and a concrete, DNA2797F, February 1992. AFATL-TR-78-24-VOL., Appendix A, Concrete Constitutive Relations at high Strength Levels. US Army Armament Research and Development Command, Aberdeen, March, USA, 1978


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top