跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡秀真
研究生(外文):Shiou-Jen Jian
論文名稱:貴金屬奈米顆粒修飾三氧化鎢奈米線陣列在太陽光下增加光電化學產氫效率
論文名稱(外文):Noble Metal Nanoparticle Modified WO3 Nanowire Arrays for the Enhancement of Photoelectrochemical Hydrogen Generation under Solar Light Illumination
指導教授:劉雅瑄
指導教授(外文):Ya-Hsuan Liou
口試委員:鄧茂華胡景堯董崇禮陳啟亮
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:三氧化鎢一維奈米陣列批覆貴金屬光電化學水分解
外文關鍵詞:tungsten trioxidenanowire arrayscoating noble metalPEC water splitting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
發展乾淨且可再生能源,並減少使用化石燃料是現今一大目標。自從本多與藤嶋教授在1972年發表以二氧化鈦為電極進行光電化學水分解,許多研究人員開始著重於利用半導體為光觸媒進行水分解的研究。藉由光電化學水分解原理,結合太陽光產氫,能有效利用太陽光之光觸媒成為發展重點。本研究即以三氧化鎢一維奈米陣列進行光電化學性質研究,尋找最佳光電化學水分解效率的製備條件,為了得到更好光電化學水分解效率,所以進一步貴金屬批覆。
在研究過程中,我們利用簡單的水熱法一次性製備三氧化鎢一維奈米陣列於鎢片上,並使用光沉積法將貴金屬奈米顆粒(Au、Pt、Pd) 批覆於材料,利用X-射線繞射光譜(XRD)、場發射掃描式電子顯微鏡/能量散射光譜儀(SEM/EDX)、高解析穿透式電子顯微鏡(HRTEM)、X-ray光電子能譜儀(XPS)和紫外光-可見光吸收光譜儀和X光吸收近邊緣結構光譜(XANES)了解材料的表面特性。XRD經分析比對後,三氧化鎢屬於單斜晶系;SEM圖則看出三氧化鎢奈米線隨時間變長,從3小時的0.5μm到10小時的17 μm,而直徑(85 nm)無任何改變;HRTEM顯示三氧化鎢奈米線成長方向為[002];XANES分析結果表示三氧化鎢經過鍛燒可以減少氧空缺情形。
合成材料進行光電化學測試,包含光電流測試、電流-時間曲線和入射單色光子-電子轉換效率(IPCE)。WO3、Au-WO3、Pt-WO3、Pd-WO3的光電化學水分解效率分別為0.22 %、0.29 %、0.26 %、0.21 %,而IPCE則顯示吸收波長範圍,WO3為360~460 nm,Au-WO3為360~520 nm,Pt-WO3為360~480 nm,Pd-WO3為360~460 nm。我們使用簡單的方法成功合成三氧化鎢一維奈米陣列,批覆Au、Pt可以增加材料的光電化學產氫效率以及提升可見光吸收,提供未來改善光電化學性質發展方向。


摘要...................................................... I
Abstract ................................................ II
圖目錄.................................................. VII
表目錄...................................................XII
第一章 緒論................................................1
1-1 研究緣起 ............................................. 1
1-2 研究目的與內容 ....................................... 2
第二章 文獻回顧........................................... 3
2-1 三氧化鎢簡介 ......................................... 3
2-1-1 三氧化鎢基本性質 ................................... 3
2-1-2 一維奈米結構 ....................................... 5
2-2 三氧化鎢一維結構奈米陣列合成方法 ......................6
2-2-1 熱燈絲化學氣相沉積法 ............................... 7
2-2-2 熱蒸鍍法 ........................................... 8
2-2-3 陽極氧化法 ......................................... 9
2-2-4 溶膠-凝膠法.........................................11
2-2-5 水熱法 .............................................13
2-3 共催化光觸媒 .........................................17
2-3-1 批覆金屬元素 .......................................17
2-3-2 摻雜非金屬元素 .....................................22
2-4 光電化學水分解 .......................................22
2-4-1 光電化學水分解原理 .................................22
2-4-2 光電化學裝置 .......................................26
第三章 實驗方法與設備.....................................28
3-1 研究架構與內容 .......................................28
3-2 材料製備 .............................................30
3-2-1 基材前處理 .........................................30
3-2-2 三氧化鎢一維奈米陣列製備 ...........................30
3-2-3 三氧化鎢一維奈米陣列修飾 ...........................31
3-3 特性分析 .............................................32
3-3-1 X-射線繞射光譜 .....................................33
3-3-2 場發射掃描式電子顯微鏡/能量散射光譜儀 ..............34
3-3-3 高解析穿透式電子顯微鏡 .............................35
3-3-4 X-射線光電子能譜儀 .................................36
3-3-5 紫外光-可見光吸收光譜儀.............................37
3-3-6 X光吸收近邊緣結構光譜 ..............................38
3-4 光電化學裝置與測試 ...................................39
3-4-1 標準測試狀況 .......................................39
3-4-2 光電化學裝置與測試 .................................41
第四章 結果與討論.........................................45
4-1 水熱法製備三氧化鎢一維奈米陣列 .......................45
4-1-1 表面形貌分析 .......................................46
4-1-2 表面特性分析 .......................................50
4-1-3 光電化學測試 .......................................54
4-2 批覆貴金屬修飾三氧化鎢一維奈米陣列 ...................61
4-2-1 表面形貌分析 .......................................63
4-2-2 表面特性分析 .......................................66
4-2-3 光電化學測試 .......................................72
4-3 機制探討 .............................................81
4-3-1 成長機制 ...........................................81
4-3-2 光電化學機制 .......................................82
第五章 結論與建議.........................................89
5-1 結論 .................................................89
5-2 建議 .................................................90
第六章 文獻回顧...........................................91

Abe R., “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation”, J. Photochem. Photobio. C: Photochem. Rev., 2010, 11, 179–209
Abe, R., Takami, H., Murakami, N., Ohtani, B., “Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide”, J. Am. Chem. Soc., 2008, 130, 7780–7781
Baeck, S. H., Jaramillo, T. F., Brändli, C., McFarland, E. W., “Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides”, J. Comb. Chem., 2002, 4, 563–568
Cao, B., Chen, J., Tang, X., Zhou, W., “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 2009, 19, 2323–2327
Chakrapani, V., Thangala, J., Sunkara, M. K.. “WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production”, Int. J. Hydrogen Energy, 2009, 34, 9050–9059
Choi, H. G., Jung, Y. H., Kim, D. K., “Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet”, J. Am. Ceram. Soc., 2005, 88, 1684–1686
Daniel, M. F., Desbat, B., Lassegues, J. C., “Infrared and Raman study of WO3 tungsten trioxides and WO3•xH2O tungsten trioxide hydrates”, J. Solid State Chem., 1987, 67, 235–247
Deb, S. K., “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications”, Sol. Energy Mater. Sol. Cells, 2008, 92, 245–258
Enesca, A., Andronic, L., Duta, A., “Influence of sodium ions (Na+) dopant on the efficiency of the tungsten trioxide photoelectrode”, Rev. Roum. Chim., 2010, 55, 11-15
Enesca, A., Duta, A., Schoonman, J., “Study of photoactivity of tungsten trioxide (WO3) for water splitting”, Thin Solid Films, 2007, 515, 6371–6374
Enesca, A., Duta, A., Schoonman, J., “Influence of tantalum dopant ions (Ta5+) on the efficiency of the tungsten trioxide photoelectrode”, Phys. Stat. Sol. A, 2008, 205, 2038–2041
Frey, G. L., Rothschild, A., Sloan, J., Rosentsveig, R., Popovitz-Biro, R., Tenne, R., “Investigations of nonstoichiometric tungsten oxide nanoparticles”, J. Solid State Chem., 2001, 162, 300–314
Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 1972, 238, 37–38
Grätzel, M., “Photoelectrochemical cells”, Nature, 2001, 414, 338–344
Gu, C., Zhang, J., Tu, J., “A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity”, J. Colloid Interface Sci., 2010, 352, 573–579
Gu, Z., Ma, Y., Yang, W., Zhang, G., Yao, J., “Self-assembly of highly oriented one-dimensional h-WO3 nanostructures”, Chem. Commun., 2005, 3597–3599
Gu, Z., Zhai, T., Gao, B., Sheng, X., Wang, Y., Fu, H., Ma, Y., Yao, J., “Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures”, J. Phys. Chem. B, 2006, 110, 23829-23836
Guo, Y., Quan, X., Lu, N., Zhao, H., Chen, S., “High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes”, Environ. Sci. Technol.,2007, 41, 4422–4427
Ha, J.-H., Muralidharan, P., Kim, D. K., “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloys Compd., 2009, 475, 446–451
Hameed, A., Gondal, M. A., Yamani, Z. H., “Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals”, Catal. Commun., 2004, 5, 715–719
Hong, S. J., Jun, H., Borse P. H., Lee, J. S., “Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems”, Int. J. Hydrogen Energy, 2009, 34, 3234–3242
Huang, K., Zhang, Q., Yang, F., He, D., “Ultraviolet photoconductance of a single hexagonal WO3 nanowire”, Nano Res., 2010, 3, 281–287
Hvolbæk, B., Janssens, T. V. W., Clausen, B. S., Hanne Falsig, Christensen, C. H., Nørskov, J. K., “Catalytic activity of Au nanoparticles”, Nanotoday, 2007, 2, 14–18
Hwang, D. W., Kim, J., Part, T. J., Lee, J. S., “Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting”, Catal. Lett., 2002, 80, 53–57
Iijima, S., “Helical microtubules of graphitic carbon”, Nature, 1991, 354, 56–58
Jiao, Z., Sun, X. W., Wang, J., Ke, L., Demir, H. V., “Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics”, J. Phys. D: Appl. Phys., 2010, 43, 285501
Kim, J. K., Shin, K., Cho, S. M., Lee T.-W., Park, J. H., “Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting”, Energy Environ. Sci., 2011, 4, 1465–1470
Kudo, A., Kato, H., Tsuji, I., “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chem. Lett., 2004, 33, 1534–1539
Lee, Y., and Lo, Y., “Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe”, Adv. Funct. Mater., 2009,19, 604–609.
Liu, B., and Aydil, E. S., “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells”, J. Am. Chem. Soc., 2009,131, 3985–3990.
Loopstra, B. O., Boldrini, P., “Neutron diffraction investigation of WO3”, Acta Cryst., 1966, 21, 158–162
Mozalev, A., Khatko, V., Bittencourt, C., Hassel, A. W., Gorokh, G., Llobet, E., Correig, X., “Nanostructured columnlike tungsten oxide film by anodizing Al/W/Ti layers on Si”, Chem. Mater., 2008, 20, 6482–6493
Nah, Y.-C., Paramasivam, I., Hahn, R., Shrestha, N. K., Schmuki, P., “Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse”, Nanotech., 2010, 21, 105704
Phuruangrat, A., Ham, D. J., Hong, S. J., Thongtem, S., Lee, J. S., “Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction”, J. Mater. Chem., 2010, 20, 1683–1690
Radecka, M., Sobas, P., Wierzbicka, M., Rekas, M., “Photoelectrochemical properties of undoped and Ti-doped WO3”, Physica B, 2005, 364, 85–92
Rajagopal, S., Nataraj, D., Mangalaraj, D., Djaoued, Y., Robichaud, J., Khyzhun, O. Y., “Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies”, Nanoscale Res. Lett., 2009, 4, 1335–1342
Salje, E., “Lattice dynamics of WO3”, Acta Cryst., 1975, A31, 360–363
Salje, E., Viswanathan, K., “Physical properties and phase transitions in WO3”, Acta Cryst., 1975, A31, 356–359
Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J., “Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications”, J. Am. Chem. Soc., 2001, 123, 10639-10649
Shankar, N., Yu, M.-F., Vanka, S. P., Glumac, N. G., “Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition”, Mater. Lett., 2006, 60, 771–774
Sharbatdaran, M., Novinrooz, A., Noorkojouri, H., “Preparation and characterization of WO3 electrochromic films obtained by the sol-gel process”, Iran. J. Chem. Chem. Eng., 2006, 25, 25–29
Shibuya, M., Miyauchi, M., “Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure”, Chem. Phys. Lett., 2009, 473, 126–130
Shibuya, M., Miyauchi, M., “Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films”, Adv. Mater., 2009, 21, 1373–1376
Solarska, R., Alexander, B. D., Augustynski, J., “Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol–gel method”, C. R. Chimie, 2006, 9, 301–306
Solarska, R., Alexander, B. D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M., Graule, T., Augustynski, J., “Tailoring the morphology of WO3 films with substitutional cation doping: effect on the photoelectrochemical properties”, Electrochim. Acta, 2010, 55, 7780–7787
Su, J., Feng, X., Sloppy, J. D., Guo, L., Grimes, C. A., “Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties”, Nano Lett., 2011, 11, 203–208
Sun, Y., Murphy, C. J., Reyes-Gil, K. R., Reyes-Garcia, E. A., Thornton, J. M., Morris, N. A., Raftery, D., “Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis”, Int. J. Hydrogen Energy, 2009, 34, 8476–8484
Vernardou, D., Drosos, H., Spanakis, E., Koudoumas, E., Savvakis, C., Katsarakis, N., “Electrochemical and photocatalytic properties of WO3 coatings grown at low temperatures”, J. Mater. Chem., 2011, 21, 513–517
Wang, H., Lindgren, T., He, J., Hagfeldt, A., Lindquist, S.-E., “Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: mechanism of electron transport”, J. Phys. Chem. B, 2000, 104, 5686–5696
Wang, H., Quan, X., Zhang, Y., Chen, S., “Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays”, Nanotech., 2008, 19, 065704
Woodward, P. M., Sleight, A. W., Vogt, T., “Ferroelectric tungsten trioxide”, J. Solid State Chem., 1997, 131, 9–17
Xi, G., Ouyang, S., Li, P., Ye, J., Ma, Q., Su, N., Bai, H., Wang, C., “Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-Infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide”, Angew. Chem. Int. Ed., 2012, 51, 2395 –2399
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., “One-dimensional nanostructures: Synthesis, characterization, and applications”, Adv. Mater., 2003, 15, 353–389
Xiang, Q., Meng, G. F., Zhao, H. B., Zhang, Y., Li, H., Ma, W. J., Xu, J. Q., “Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing”, J. Phys. Chem. C, 2010, 114, 2049–2055
Yang, B., Luca, V., “Enhanced long-wavelength transient photoresponsiveness of WO3 induced by tellurium doping”, Chem. Commun., 2008, 4454–4456
Yu, J., Qi, L., “Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity”, J. Hazard. Mater., 2009, 169, 221–227
Yuan, J., Zhang, Y., Le, J., Song, L., Hu, X., “New templated method to synthesize electrochromic mesoporous tungsten oxides”, Mater. Lett., 2007, 61, 1114–1117
Zhang, J., Tu, J.-P., Xia, X.-H., Wang, X.-L., Gu, C.-D., “Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance”, J. Mater. Chem., 2011, 21, 5492–5498
Zhao, Z.-G., Miyauchi, M., “Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts”, Angew. Chem. Int. Ed., 2008, 47, 7051–7055
莊浩宇、陳東煌,「取之不盡的太陽能:光電化學反應」,科學發展,2009,437,58–63
鄭信民、林麗娟,「X光繞射應用簡介」,工業材料雜誌,2002,181,100–108
賴英煌、邱雯藝、洪偉修,「同步輻射X-ray光電子能譜在表面化學之研究」,化學季刊,2002,60,381–390
林俊誠,「氧化鎢奈米線之合成與特性分析」,碩士論文,國立台灣科技大學光電工程所,2009
洪晟晏,「以溶膠-凝膠法製備氧化鎢電致變色薄膜之研究」,碩士論文,國立成功大學材料科學及工程學所,2008
郭至剛,「板鈦礦晶相二氧化鈦之製備、鑑定與光化學應用」,碩士論文,國立台灣大學理學院化學系,2009
許金元,「W18O49氧化鎢奈米材料及其特性之研究」,碩士論文,國立台北科技大學製造科技研究所,2009
陳俊吉,「金屬氧化物半導體在可見光分解水製氫之研究」,碩士論文,國立成功大學化學工程學系,2005
彭郁華,「二氧化鈦奈米管氫能能源製備系統之設計」,碩士論文,國立臺灣大學工學院材料科學與工程學系暨研究所,2008
鄒宜錚,「醇類蒸氣處理對氧化鎢薄膜光電化學反應影響之研究」,碩士論文,國立成功大學化學工程學系,2009
蔡佳珊,「氣體擴散層支撐PtW/WO3奈米線陽極觸媒」,碩士論文,國立台灣科技大學化學工程學系,2008
謝文元,「熱碳還原法生長WO3奈米線及Ge-Si1-xGexOy核殼奈米線」,碩士論文,國立成功大學材料科學及工程學所,2007



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top