跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊志鋒
研究生(外文):Zhi-Feng Yang
論文名稱:共沉澱法製備磁性納米碳材與應用於銅離子去除之研究
論文名稱(外文):Preparation of Magnetic Fe3O4/Carbon Nanocomposites by Co-precipitation Method for Removal of Copper Ions from Aqueous Solution
指導教授:謝建德謝建德引用關係
指導教授(外文):Chien-Te Hsieh
口試委員:陳金銘李桐進
口試委員(外文):Jin-Ming ChenTorng-Jinn Lee
口試日期:2017-06-15
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:共沉澱法碳納米管石墨烯四氧化三鐵銅離子
外文關鍵詞:Co-precipitation methodCarbon nanotubeGrapheneFe3O4Copper ions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著大陸半導體製造業的快速發展,半導體生產過程中的廢液處理問題日益受到企業的重視。本研究利用共沉澱法製備磁性納米碳材作為吸附劑來吸附重金屬銅離子,主要是利用吸附劑的磁性來實現固液高效分離和吸附劑回收再利用。本研究利用X-ray粉末繞射儀(XRD)、X光光電子光譜儀(XPS)、傅立葉-紅外線光譜儀(FTIR)高解析透射式電子顯微鏡(TEM)和場發射掃描式電子顯微鏡(SEM)對磁性納米碳材的微觀形態和成分分析,利用等溫吸附模型對不同碳鐵比重的兩種磁性納米碳材吸附結果進行擬合分析。XPS和XRD測試結果表明利用共沉澱法製備得到CNT@Fe3O4和GO@Fe3O4具有較高的純度;SEM和TEM測試結果表明本研究製備得到的Fe3O4納米顆粒尺寸在10-20 nm左右,且具有較好的分散性。通過等溫方程擬合結果的比較,不同碳鐵比例CNTs@Fe3O4和GO@Fe3O4對Cu2+的吸附量分別在9.32-9.48 mg g-1和15.43-32.49 mg g-1之間,少量的Fe3O4的加入可以提高GO的吸附量,兩種磁性碳材吸附類型是均屬於離子交換型的吸附,且其吸附過程均屬於吸熱過程。本研究利用鹼性溶液完成對磁性納米碳材的脫附,當pH值為11時重複利用性較好。
With the rapid development of semiconductor manufacturing, the treatment of liquid waste in the production process cause increasingly the attention of the enterprises. In this reaserch, the magnetic Fe3O4/Carbon nanocomposites prepared by co-precipitation method was used as absorbent for the absorption of copper ions. The efficient separation of the absorbent and absorbate and the recycling of absorbent were realized by the magnetic propert. In this reaserch, XRD, XPS, FTIR, TEM and SEM were used to analyze the micromorphology and component of the pruducts. Using the isotherm models of Langmuir, Freundlich and Dubinin-Radushkevich were to analyze the adsorption equilibrium datas of diffrenet proportion of carbon and Fe3O4 in order to study mechanism of adsorption. The results of XRD and XPS indicate the high purity of products and the results of SEM and TEM indicate the size of Fe3O4 nanoparticles is approximately 20 nm with a highly dispersed. The theoretical maximum adsorbing capacity of CNT@Fe3O4 and GO@Fe3O4 for copper ions was calculated by Langmuir isothermal equation is between 9.32 and 9.48 mg g-1, 15.43 and 32.49 mg g-1 respectively, which indicate a slight adding of Fe3O4 can enhance adsorbing capacity of GO. The type of adsorption of them is belong to ino-exchange type and belong to endothermic process. In this study, the alkaline solution was succeedly used to desorb the Cu2+ from magnetic Fe3O4/Carbon nanocomposites, and it work best when pH is 11.
誌 谢 I
摘 要 II
Abstract III
目 錄 IV
圖 目 錄 VIII
表 目 錄 XI
第一章 前言 1
1.1 研究動機與目的 1
第二章 文獻回顧 8
2.1 納米碳材料簡介 8
2.2 納米碳材的吸附特性 10
2.2.1 碳納米管 10
2.2.2 石墨烯 12
2.2.3 活性炭 14
2.3 磁性納米碳材製備合成方法 15
2.3.1 共沉澱法 15
2.3.2 氧化(還原)沉澱法 17
2.3.3 水熱法 18
2.3.4 高溫氧化法 19
2.4 吸附模型理論 20
2.4.1 Langmuir吸附理論 20
2.4.2 Freundlich吸附理論 22
2.4.3 Dubinin-Radushkevich吸附理論 23
第三章 實驗方法與分析 24
3.1 實驗器材 24
3.1.1 實驗藥品 24
3.1.2 實驗儀器 26
3.2 實驗方法 27
3.2.1 實驗架構 27
3.2.2 磁性納米碳材的製備 28
3.2.3 吸附實驗 30
3.2.4 再吸附實驗 37
3.4 磁性納米顆粒的特性分析 38
3.4.1 X-ray粉末繞射儀 38
3.4.2 場發射掃描式電子顯微鏡 40
3.4.3 高解析穿透式電子顯微鏡 42
3.4.4 熱重分析儀 44
3.4.5 紫外/可見光分光光譜儀 45
3.4.6 傅立葉-紅外線光譜儀 47
3.4.7 X光光電子光譜儀 49
第四章 結果與討論 51
4.1 磁性納米碳材結構特性表徵 51
4.1.1 Fe3O4之合成原理與磁性納米碳材之合成機理 51
4.1.2 分散劑對磁性納米碳材合成之效應 53
4.1.3 材料晶體結構分析 55
4.1.4 元素成分分析 57
4.1.5 官能基鍵結分析 61
4.1.6 材料熱重分析 63
4.1.7 材料形貌分析 64
4.2 吸附實驗分析 67
4.2.1 pH值對吸附Cu2+的影響 67
4.2.2 吸附等溫模型與熱力學方程式 68
4.2.3 CNT@Fe3O4吸附Cu2+結果分析 70
4.2.4 GO@Fe3O4吸附Cu2+的結果分析 75
4.3 脫附與再吸附實驗分析 80
4.3.1 CNT@Fe3O4脫附實驗 80
4.3.2 GO@Fe3O4脫附實驗 82
4.4 吸附與脫附機制 83
4.4.1 CNT@Fe3O4吸附機制 83
4.4.2 GO@Fe3O4吸附機制 85
4.4.3 CNT@Fe3O4和GO@Fe3O4脫附機理 87
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來展望 91
參考文獻 92
1. 季建平,半導體資訊 2015, 3, 37-38.
2. Ernst D. China's Bold Strategy for Semiconductors–Zero-Sum Game or Catalyst for Cooperation?. 2016.
3. 大陸晶圓廠的情況,
https://kknews.cc/tech/pze86p.html
4. 沈熙磊,半導體資訊 2011, 6, 5.
5. A.T. Hay, Electrical protection for boilers, U.S. Patent 140,196, June 24, 1873.
6. R. D. Ambashta, M. Sillanpää. J. Hazard. Mater. 2010, 180, 38-49.
7. R. M. Dhoble, P. R. Maddigapu, S. S. Rayalu, S. S. Rayaluet, A.G. Bholeal. J. Hazard. Mater. 2017, 322, 469-478.
8. Z. N. Lou, L. Wan, C. F. Guo, S. Q. Zhang, W. J. Shan, et al. Ind. Eng. Chem. Res. 2015, 54, 1333-1341.
9. D.S. Su, S. Perathoner, G. Centi. Chem. Rev. 2013, 113, 5782-5816.
10. Z. Sun, Y. Liu, B. Li, J. Wei, M. Wang, et al. ACS Nano. 2013, 7, 8706-8714.
11. X. Tang, S. S. Jan, Y. Y. Qian, H. Xia, J. F. Ni, et al. Sci Rep. 2015, 5, 11958.
12. M. L. Tsai, W. C. Tu, L. Tang, T. C. Weiet al. Nano Lett. 2015, 16, 309-313.
13. H. U. Kim, H. Y. Kim, A. Kulkarni, A. Chisung, Y. H. Jin, et al. Sci Rep, 2016, 6, 34587.
14. T.K. Indira, P.K. Lakshmi. Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 1035-1042.
15. A. Ríos, M. Zougagh, M. Bouri. Anal. Methods. 2013, 5, 4558-4573.
16. Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S. Kumar, T. Pavani. International Nano Letters. 2015, 5, 85-92.
17. S.H. Chae, Y.H. Lee. Nano Convergence 2014, 1, 1-26.
18. S. Iijima. Nature 1991, 354, 56-58.
19. C. L. Wu, J. Fan, J. H. Jiang, J. J. Wang. RSC Adv., 2015, 5, 47165-47173.
20. A. S. Kumar, S. J. Jiang, W. L. Tseng. J. Mater. Chem. A. 2015, 3, 7044-7057.
21. H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang. Colloid Interface Sci. 2007, 316, 277-283.
22. C.Y. Kuo, H.Y. Lin. Desalination 2009, 249, 792-796.
23. M.I. Kandah, J.L. Meunier. J. Hazard. Mater. 2007, 146, 283-288.
24. Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, et al. J. Hazard. Mater. 2010, 177, 876-880.
25. G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, et al. J. Chem. Technol. Biotechnol. 2016, 91, 2322-2330.
26. Y. Liu, W. Jiang, Y. Wang, X. Zhang, D. Song, et al. J. Magn. Magn. Mater. 2009, 321, 408-412.
27. R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, et al. Environ. Sci. Pollut. Res. 2013, 20, 7175-7185.
28. K. Li, Q. Gao, G. Yadavalli, X. Shen, H. W. Lei, et al. ACS Appl. Mater. Interfaces 2015, 7, 21047-21055.
29. K.S. Novoselov, A.K. Geim, S.V. Morozov, C. Jiang, Y. Zhang, et al. Science 2004, 306, 666-669.
30. S. He, F. Zhang, S. Z. Cheng, W. Wei. ACS Sustainable Chem. Eng. 2016, 4, 3948-3959.
31. Y. Xiong, X. R. Cui, P Zhang, Y. J. Wang, et al. ACS Sustainable Chem. Eng. 2016, 5, 1010-1018.
32. L. Liu, S. X. Liu, Q. P. Zhang, C. Li, C. L. Bao, et al. J. Chem. Eng. Data 2012, 58, 209-216.
33. D. Cortés-Arriagada, A. Toro-Labbé. Phys. Chem. Chem. Phys. 2015, 17, 12056-12064.
34. X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, et al. Carbon 2012, 50, 4856-4864.
35. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, et al. Dalton Trans. 2013, 42, 5682-5689.
36. P. Tan, J. Wen, Y. Hu, X. Tan. RSC Adv. 2016, 6, 79641-79650.
37. X. B. Zhu, Y. Shan, S. J. Xiong, J. C. Shen, X. L. Wu. ACS Appl. Mater. Interfaces 2016, 8, 15848-15854.
38. X. Li, S. F. Wang, Y. G. Liu, L. H. Jiang, B. Song, et al. J. Chem. Eng. Data 2016, 62, 407-416.
39. Y. Yoon, W.K. Park, T.M. Hwang, D.H. Yoon, W.S. Yang, et al. J. Hazard. Mater. 2016, 304, 196-204.
40. P. Bhunia, G. Kim, C. Baik, C. Baik, H. Lee. Chem. Commun. 2012, 48, 9888-9890.
41. S. Bahar, F. Karami. J. Iran. Chem. Soc. 2015, 12, 2213-2220.
42. N. Sui, L. Wang, X. Wu, X. Li, J. Sui, et al. RSC Adv. 2014, 5, 746-752.
43. J. Liu, W. Liu, Y. Wang, M. Xu, B. Wang. Appl. Surf. Sci. 2016, 367, 327-334.
44. A. L. Cazetta, O. Pezoti, K. C. Bedin, T. L. Silva, A. P. Junior, et al. ACS Sustainable Chem. Eng. 2016, 4, 1058-1068.
45. X. G. Luo, X. J. Lei, N. Cai, X. P. Xie, Y. N. Xue, et al. ACS Sustainable Chem. Eng. 2016, 4, 3960-3969.
46. J.M. Niu, Z.G. Zheng. Advanced Materials Research 2014, 900, 172-176.
47. D. Han, S. Yang, J. Yang, P. Zou, X. Kong, et al. Nanosci. Nanotechnol. Lett. 2016, 8, 335-339.
48. J. Liu, W. Liu, Y. Wang, M. Xu, B. Wang. Appl. Surf. Sci. 2016, 367, 327-334.
49. Z. X. Jin, X. G. Wang, Y. B. Sun, Y. J. Ai, X. K. Wang. Environ. Sci. Technol. 2015, 49, 9168-9175.
50. H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, et al. Chem. Eng. J. 2011, 173, 494-502.
51. Ş.S. Bayazit, Ö. Kerkez. Chem. Eng. Res. Des. 2014, 92, 2725-2733.
52. Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, et al. J. Mater. Chem. 2012, 22, 3527-3535.
53. Y. Lu, J. Yu, S. Cheng. J. Radioanal. Nucl. Chem. 2015, 303, 2371-2377.
54. J. Hu, D. Zhao, X. Wang. Water Sci. Technol. 2011, 63, 917-923.
55. W.W. Tang, G.M. Zeng, J.L. Gong, Y. Liu, X.Y. Wang, et al. Chem. Eng. J. 2012, 211, 470-478.
56. X. Jia, H. Song,C. Min, X. Zhang. Appl. Phys. A 2012, 109, 261-265.
57. L. Zhang, Q.Q. Ni, T. Natsuki, Y. Fu. Appl. Surf. Sci. 2009, 255, 8676-8681.
58. S. H. Zhan, D. D. Zhu, S. L. Ma, W. C. Yu, Y. N. Jia, et al. ACS Appl. Mater. Interfaces 2015, 7, 4290-4298.
59. R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, et al. Environ. Sci. Pollut. Res. 2013, 20, 7175-7185.
60. Yan H, Li H, Tao X, et al. ACS Appl. Mater. Interfaces 2014, 6, 9871-9880.
61. I. Langmuir. J. Am. Chem. Soc. 1916, 38, 2221-2295.
62. H. M. Freundlich. J. Phys. Chem. 1906, 57, 470.
63. J. Chen, Y. Cai, M. Clark, Y. Yu. PloS one. 2013, 8, 60243.
64. C.T. Hsieh, H. Teng. J. Chem. Technol. Biotechnol. 2000, 75, 1066-1072.
65. F. Langmuir, D.R.I. Temkin. J Appl Chern. 2012, 3, 38-45.
66. G. Neeraj, S. Krishnan, P.S. Kumar, K.R. Shriaishvarya, V.V. Kumar. J. Mol. Liq. 2016, 214, 335-346.
67. 布拉格定律,
https://en.wikipedia.org/wiki/Bragg's_law
68. S. Shariati, M. Faraji, Y. Yamini, A.A. Rajabi. Desalin 2011, 270, 160-165.
69. H. L. Fan, R. T. Niu, J. Q. Duan, W. Liu and W. Z. Shen. ACS Appl. Mater. Interfaces 2016, 8, 19475-19483.
70. D. Wilson, M. A. Langell. Appl. Surf. Sci. 2014, 303, 6-13.
71. S. H. Zhan, D. D. Zhu, S. L. Ma, W. C. Yu, Y. N. Jia, et al. ACS Appl. Mater. Interfaces 2015, 7, 4290-4298.
72. W. Huang, X. X. Xiao, C. Engelbrekt, M. W. Zhang, S. Li, et al. Mater. Chem. Front. 2017.
73. C. J. Zhao, X. X. Shao, Y. X. Zhang and X. Z. Qian. ACS Appl. Mater. Interfaces 2016, 8, 30133-30142.
74. S. F. He, F. Zhang, S. Z. Cheng and W. Wang. ACS Sustainable Chem. Eng. 2016, 4, 3948-3959.
75. B. Shen, W. T. Zhai, M. M. Tao, J. Q. Ling and W. G. Zheng. ACS Appl. Mater. Interfaces 2013, 5, 11383-11391.
76. K. Li, Q. Gao, G. Yadavalli, X. Shen, H.W. Lei, et al. ACS Appl. Mater. Interfaces 2015, 7. 21047-21055.
77. X. L. Jia, W. S. Li, X. J. Xu, W. B. Li, Q. Cai, et al. ACS Appl. Mater. Interfaces 2015, 7, 3170-3179.
78. X. Li, S. F. Wang, Y. G. Liu, L. H. Jiang, B. Song, et al. J. Chem. Eng. Data 2017, 62, 407-416.
79. J. Hu, D. D. Shao, C. G. Chen, G. D. Sheng, J. X. Li, et al. J. Phys. Chem. B 2010, 114, 6779-6785.
80. S. F. Yan, X. Zhang, Y. Y. Sun, T. T. Wang, X. S. Chen, et al. Colloids Surf., B 2014, 113, 302-311.
81. P. Li, A. M. Zhu, Q. L. Liu and Q. G. Zhang. Ind. Eng. Chem. Res. 2008, 47, 7700-7706.
82. Y. Wei, B. Han, X. Y. Hu, Y. H. Lin, X. Z. Wang, et al. Procedia Eng. 2012, 27, 632-637.
83. L. P. Zhao, L. Gao. J. Mater. Chem. 2004, 14, 1001-1004.
84. N. Bakhtiari, S. Azizian, S. M. Alshehri, N. L. Torad, V. Malgras, et al. Microporous Mesoporous Mater. 2015, 217, 173-177.
85. S. Chen, W. Shen, F. Yu, W. L. Hu, H. P. Wang. J. Appl. Polym. Sci. 2010, 117, 8-15.
86. T. Suponik, A. Winiarski, J. Szade. Physicochem. Probl. Miner. Process. 2015, 51, 731-743
87. R. Ahmad, R.Kumar, S. Haseeb. Arabian J. Chem. 2012, 5, 353-359.
88. G. P. Kumar, P. A.Kumar, S. Chakraborty, M. Ray. Sep. Purif. Technol. 2007, 57, 47-56.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊