跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:田世綱
研究生(外文):Shih-Kang Tien
論文名稱:以無電鍍製程鍍製三元鎳磷鎢薄膜及其微結構,熱穩定性,機械性質分析
論文名稱(外文):Microstructure, Thermal Stability, and Mechanical Properties of Ni-P-WAlloy Coating Fabricated by Electroless Process
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Jenq-Gong Duh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:無電鍍鎳磷鎢薄膜微結構熱穩定性
外文關鍵詞:ElectrolessNi-P-W Thin FilmMicrostructureThermal Stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
Eletroless Ni-P exhibiting sufficient properties of hardness, corrosion protection and wear resistance has been applied in various fields of industries. The as-deposited Ni-P coating with supersaturated solid solution which could be strengthened by proper heat treatment is widely used in the optical industries due to its good cutting ability at low temperature and thermal stability at high temperature. However, the strength of Ni-P coating would degrade rapidly with increasing operation temperature higher than crystallization temperature of Ni3P. Suppressing the crystallization of N3P to elevated temperature is thus crucial to extend the application field of Ni-P based coating. To enhance the thermal stability, a third element, tungsten, is incorporated into the Ni-P based coating. Thermal stability of electroless Ni-P-W deposit can be enhanced by the dissolution of tungsten into the nickel matrix as compared to binary electroless Ni-P films. Thermal analysis shows that the introduction of W in the Ni-P coating by co-deposition retards the Ni3P precipitation up to 405.5oC and retains the strengthening effect to a higher temperature of 450C. For the Ni-P-W coating with high P content, the strengthened effect is extended to an even higher temperature of 500oC. From the calculation of Debye-Scherer equation, the lattice constant of Ni calculated with five major peaks in X-ray diffraction is obtained. The value of 3.564Å is bigger than pure nickel of 3.52Å, indicating the dissolution of tungsten into Ni matrix. The kinetic parameter of activation energy in the Ni-P-W coating analyzed by the Kissinger as well as Augis and Bennett methods with different heating rates from 1 to 50oC/min is 307kJ/mol which is much higher than that in the Ni-P coating. Microstructure evolution indicates that all coatings in the as-deposited state show amorphous structure. The precipitation of Ni3P accompanied with W dissolving into the Ni matrix is revealed to be the final product of the phase transformation in Ni-P-W coatings after thermal treatment.
The microhardness of the as-deposited coatings is enhanced by co-deposition of tungsten. With increasing heat-treated temperature, the hardness of the Ni-P-3.5W coating increases rapidly, reaching the maximum value of 1540HK at 400oC. For Ni-P-W coating with high P content, the peak hardness is 1460HK at 450oC and retains the high value to 500oC. For thermal cycle test at 375oC, the crystallization behavior is crystallization of nickel, dissolving of tungsten into nickel matrix and finally the precipitation of Ni3P phase. The hardness increases slightly due to the nickel refining and the dissolution of tungsten into nickel matrix through six times of thermal cycle. After eight cycles, more increase in hardness is revealed with the precipitation of Ni3P. When the temperature of the thermal cycle test is raised to 400 or 450oC, hardness retains a high reliability even after 8 times of thermal cycle.

Contents
Table List III
Figure Caption IV
Abstract VII
Chapter I Introduction 1
Chapter II Literature Review 4
2.1 Surface Engineering 4
2.2 Eletroless Plating 6
2.3 Ni-P-Based Coating 7
2.3.1 Ni-W Coating 7
2.3.2 Electroless Ni-P Coating 8
2.3.2.1 Mechanisms of eletroless nickel-phosphorus
plating 9
2.3.2.2 Application, Advantage and Limitation of
Electroless Nickel 11
2.3.2.3 Structure and Properties of Electroless Ni-P
Coating 13
2.3.3 Electroless Ni-P-based Coating 15
2.4 Surface Characterization 17
2.4.1 Morphology Investigation 17
2.4.2 Surface Roughness Measurement 18
Chapter III Experimental Procedure 33
3.1 Substrate Preparation 33
3.1.1 Grinding and Polishing 33
3.1.2 Ultrasonic Cleaning 33
3.1.3 Acid Clean and Activation 33
3.2 Eletroless Plating 34
3.2.1 Equipment Set-up 34
3.2.2 Electroless Ni-P Plating 35
3.2.3 Electroless Ni-P-W Plating 35
3.3 Heat Treatment and Thermal Property Measurement 36
3.4 Measurements and Analysis 36
3.4.1 Composition Analysis 36
3.4.2 Surface Characterization 37
3.4.3 Differential Scanning Calorimeter Analysis 37
3.4.4 Phase Identification 37
3.4.5 Microstructure Investigation 38
3.4.6 Microhardness Evaluation 38
Chapter IV Results & Discussion 47
4.1 Fabrication of eletroless Ni-P-W coatings 47
4.2 Structure, thermal stability, and mechanical
properties of electroless Ni-P-W alloy coatings
during cycle test 49
4.3 The effect of tungsten addition on the thermal
stability and microstructure in the eletroless
Ni-P-W coating with high phosphorus content 55
Chapter V Conclusions 93
References 95

References
1.P.S. Kumar, P.K. Nair, Journal of Materials Processing Technology 56 (1996) 511.
2.L.F. Spencer, Metal Finishing Oct. (1974) 35.
3.Metal Handbook, 9th ed., vol. 5, American Society for Metals, 1983, p. 219.
4.G. O. Mallory, J. B. Hajdu, Electroless Plating Fundamentals and Applications, America Electroplaters and Surface Finishers Society, Orlando, FL, 1990, Chapter 4.
5.D. Mencer, Journal of Alloys and Compounds 306 (2000) 158—162
6.F. Pearlstein, R. F. Weightman, R. Wick, Metal Finishing 61 (1963) 77.
7.B. W. Zhang, W. Y. Hu, Q. L. Zhang, X. Y. Qu, Materials Characterization 37 (1996) 119-122.
8.B.W. Zhang, W.Y. Hu, X.Y. Qu, Q.L. Zhang, H. Zhang, Z.S. Tan, Trans. IMF 74 (2) (1996) 69.
9.T. Osaka, H. Sawai, F. Otoi, K. Nihei, Metal Finishig 80 (1982) 31.
10.Z. Song, X.H. Bao, M. Muhler, Applied Surface Science 148 (1999) 241.
11.Y. Y. Tsai, F. B. Wu , Y. I. Chen, P. J. Peng , J. G. Duh, S. Y. Tsai, Surface and Coatings Technology 146 —147 (2001) 502—507.
12.M. Bratoeva, N. Atanassov, Metal Finishing 96 (6) (1998) 92.
13.M. Obradovic, J. Stevanovic, R. Stevanovic, Journal of Electroanalytical Chemistry 491 (2000) 188—196.
14.T. Yamasaki, P. SchloBmacher, K. Ehrlich, et al., Nanostructured Materials 10 (3) (1998) 375—388.
15.F. B. Wu, Y. I. Chen, P. J. Peng, Y. Y. Tsai and J. G. Duh, Surface and coatings Technology, 150 (2002) 232-238.
16.I. Koiwa, M. Usuda, T. Osaka, Journal of Electrochemical Society 135 (5) (1988) 1222.
17.V.D. Papachristos, C.N. Panagopoulos, U. Wahlstrom, L.W. Christoffersen, P. Leisner, Materials Science and Engineering A 279 (2000) 217.
18.I. Apachitei, F. D. Tichelaar, J. Duszczyk, L. Katgerman, Surface and Coatings Technology 149 (2002) 263-278.
19.T. Yamasaki, P Schlomacher, K. Ehrlich and Y. Ogino, Nanostructured Materials, Vol. 10, 3 (1998) 375-388.
20.K.G. Keong , W. Sha, S. Malinov, Journal of Materials Science 37 (2002) 4445-4450.
21.K.G. Keong , W. Sha, S. Malinov, Journal of Alloys and Compounds 334 (2002) 192—199.
22.D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a handbook of surface engineering, Glasgow, Blackie, (1991).
23.Y. Chiba, T. Omura, and H. Ichimura, "Wear Resistance of Arc Ion-Plated Chromium Nitride Coatings", J. Mater. Res., 8 (1993) 1109-1115.
24.H. Hellock, "Material Selection for Hard Coatings," J. Vac. Sci. Technol., A4(6) (1986) 2661-2669.
25.J. K. Dennis & T. E. Such, Nickel and Chromium Plating, 2nd Ed., Butterworths & Co Ltd., (1986) Chap. 11.
26.J. A. Mullendore, "Tungsten: Its Manufacture, Properties, and Application," Refractory Metals and Their Industrial Applications, ASTM STP 849, R. E. Smallwood, Ed., American Society for Testing and Materials, Philadelphia, (1984) 82-105.
27.W. H. Safranek, The Properties of Electrodeposited Metals and Alloys, 2nd Ed., American Electroplaters and Surface Finishers Society, Florida, USA, (1986) 345-350.
28.V. B. Singh, L. C. Singh, and P. K. Tikoo, "Studies on Electrodeposition of Nickel-Cobalt-Tungsten Alloys," J. Electrochem. Soc., 127 (1980) 590-596.
29.N. Krasteva, V. Fotty, and S. Armyanov, “Thermal Stability of Ni-Cu-P Amorphous Alloys”, J. Electrochem. Soc., Vol. 141, No. 10, October (1994) 2864-2867.
30.A. Brenner, P. Burkhead, and E. Seegmiller, "Electrodeposition of Tungsten Alloys Containing Iron, Nickel and Cobalt, J. Res. Natl. Bur. Standards, 39 (1947) 351-383.
31.C. R. Shipiey Jr., "Historical Highlights of Electroless Plating", Plat. and Surf. Fin., 71[6] (1984) 92—99.
32.A. Szasz, D. J. Fabian, Z. Paal, J. Kojnok, "Chemical Mechanisms in Electroless Deposition", J. Non-Crystal. Solids, 103 (1988) 21—27.
33.K. Parker, "Electroless Nickel: state of the art", Plat. and Surf. Fin., March (1992) 29-33. Fin., Sept. (1996) 36-37.
34.C. R. Shipiey Jr., "Historical Highlights of Electroless Plating", Plat. and Surf. Fin., 71[6] (1984) 92-99.
35.P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, June (1991) 235.
36.R. C. Agarwala and S. Ray, "Variation of Structure in Electroless Ni-P Films With Phosphorus Content", Z. Metallkunde, 79 (1988) 472-475.
37.S. H. Park and D. N. Lee, "A Study on the Microstructure and Phase Transformation of Electroless Nickel Deposit", J. Mater. Sci., 23 (1988) 1643-1654.
38.R. M. Allen and J. B. VanderSande, "The Structure of Electroless Ni-P Films as a Function of Composition," Scripta Metallurgica, 16 (1982) 1161-1164.
39.P. R. Krishnamoorthy, B. H. Narayana, T.V. Ramakrishna and M. Sheknar Kumar, "Properties of Electroless Nickel-Phosphorus Deposits After Crystallization", Metal Finishing, Nov. (1992) 13-18.
40.C. J. Chen and K. L. Lin, “The Deposition and Crystallization Behaviors of Electroless Ni-Cu-P Deposits”, Journal of The Electrochemical Society, 146 (1) (1999) 137-140.
41.K. H. Hur, J. H. Jeong, and D. N. Lee, “Effect of Annealing on Magnetic Properties and Microstructure of Electroless Nickel-Copper-Phosphorus Alloy Deposits”, Journal of Materials Science, 26 (1991) 2037-2044.
42.M. Cherkaoui, A. Srhiri and E. Chassaing, “Electroless Deposition of Ni-Cu-P Alloys”, Plating and Surface Finishing, November (1992) 68-71.
43.Y. Wang, C. Xiao and Z. Deng, “Structure and Corrosion Resistance of Electroless Ni-Cu-P”, Plating and Surface Finishing, March (1992) 57-59.
44.N. Krasteva, V. Fotty, and S. Armyanov, “Thermal Stability of Ni-Cu-P Amorphous Alloys”, J. Electrochem. Soc., Vol. 141, No. 10, October (1994) 2864-2867.
45.S. Armyanov, and O. Steen, “Auger Electron Spectroscopy Element Profiles and Interface with Substrates of Electroless Deposited Ternary Alloys”, J. Electrochem. Soc., 143 (1996) 3692-3698.
46.C. Y. Lee and K. L. Lin, “Ni-Cu-P and Ni-Co-P as a Diffusion Barrier between an Al Pad and a Solder Bump,” Thin Solid Films, 239 (1994) 93-98.
47.S. Armyanov,J. Georgieva, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, and A. Ruffini, "Electroless Deposition of Ni-Cu-P Alloys in Acidic Solution," Electrochemical and Solid-State Letters, 2 (1999) 323-325.
48.S. K. Doss and P. B. P. Phipps, "Process for the Preparation of Electroless Nickel with Superior Thermal Stability," Plat. Surf. Finish., April (1985) 64-67.
49.A. Talaat EI-Mallah, M. Hassib Abbas, M Farid Shafei, M. EI-Sayed Aboul-Hassan and I. Nagi, “Structure of Electroless Nickel Deposits from Baths Containing Sodium Hypophosphite and Potassium Borohydride,” Plating and Surface Finishing, May (1989) 124-128.
50.P. Sampath Kumar and P. Kesavan Nair, “Structure Transformations in Electroless Ni-B-P Deposits,” Plating and Surface Finishing, May, (1994) 96-100.
51.M. Schlesinger and X. Meng, and D. D. Snyder, "Electroless Ni-Zn-P Films," J. Electrochem. Soc., 137, June (1990) 1858-1860.
52.G. J. Lu and G. Zangari, "Corrosion Resistance of Ternary Ni-P Based Alloys in Sulfuric Acid Solutions," Electrochemica Acta 47 (2002) 2969-2979.
53.F. Pearlstein, R. F. Weightman, and R. Wick, Metal Finish, 61 (1963) 77.
54.T. Osaka, H. Sawai, F. Otoi, and K. Nihei, Metal Finishing, (1982) 31.
55.Z. Song, X. H. Bao, and M. Muhler, "The Effect of Tungsten Additive on the Surface Characteristics of Amorphous Ni-P Alloy," Appl. Surf. Sci., 148 (1999) 241-247.
56.T. R. Thomas, Rough Surfaces, 2nd Edition, Imperial College Press, London, (1999) Chap. 2, 21.
57.J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, Optical Society of America, Washington, D. C., (1989) Chap. 4, 39.
58.J. C. Vickerman Ed., "Surface Analysis: The Principle Techniques," John Wiley & Sons, Chichester, UK, (1997) 393.
59.J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, (1981).
60.E.M. Ma, S.F. Luo, P.X. Li, Thin Solid Films 166 (1988) 273—280.
61.Y. Z. Zhang, Y.Y. Wu, M. Yao, Journal of Materials Science Letters 17 (1998) 37-40
62.B. D. Cullity and S. R. Stock, Element Of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, 2001.
63.K. Maeda, T. Ikari, Y. Akashi, and K. Futagami, Journal of Materials Science 29 (1994) 1449-1454.
64.Wendlandt, and W. William, Thermal analysis, Wiley, New York, 1986.
65.H. E. Kissinger, Analytical Chemistry 29 (1957) 1702.
66.J. A. Augis and J. E. Bennett, “Calculation of the Avrami Parameters for Heterogeneous Solid State Reaction Using A Modification of Kissinger Method”, Journal of Thermal Analysis and Calorimetry, 13 (1978) 283-92.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top