跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泰利
研究生(外文):Tai-Lee Chen
論文名稱:微帶漏波模之孔徑耦合激發及模耦合現象之研究
論文名稱(外文):Aperture-Coupling Excitation and Mode-Coupling Phenomena of Microstrip Leaky Modes
指導教授:林育德林育德引用關係
指導教授(外文):Yu-De Lin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:13
中文關鍵詞:微帶漏波天線孔徑耦合模耦合饋入結構漏波模
外文關鍵詞:microstripleaky-wave antennaaperture couplingmode couplingfeeding structureleaky mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討微帶第一及第二高階漏波模之特性及其應用,包括其有效之饋入結構、微帶線間之相互耦合效應、不同漏波模間之耦合效應、以及多種天線之設計應用。整篇論文均採用頻域分析法做為微帶漏波模傳播特性分析之工具。
本論文之第一部份探討有關微帶第一高階漏波模(微帶奇次模)之特性及應用。孔徑耦合激發微帶第一高階漏波模之設計方法在此被提出。將輻射單元與其他元件以接地面隔離可提供此二部份個別之最佳化設計,因此能將微帶漏波天線之寬頻、高天線增益及頻率掃描特性充分展現。X波段之斜向及橫向天線驗證了此種設計方法。K波段之單波束及數種雙波束天線陣列與S波段基地台天線之應用亦被設計完成。結合多層結構技術的優點可提供無線通訊應用有效、簡單、多樣性以及高天線增益之設計。此外,因第一高階漏波模所產生微帶線間耦合現象亦被討論。我們發現無限長耦合微帶線間之共振現象,此現象肇因於耦合微帶線內緣之邊界條件配合微帶第一高階漏波模為場源所形成。於耦合微帶線之奇對稱及偶對稱分別產生不只一個漏波模,而這些模有相互耦合的現象。
本論文之第二部份探討有關微帶第二高階漏波模(微帶偶次模)之特性及應用。微帶偶次模之耦合現象在此被討論。此現象發生於當微帶漏波主模的色散曲線與偶次模接近時。改變微帶之金屬帶寬及基板厚度可觀察到有趣的模演化遷移現象,並由此得知偶次模間漏波模之相互關係。我們發現偶次模本身之頻域間隙乃為漏波主模與漏波偶次模發生耦合的結果。短路之共平面波導饋入與微帶線饋入方法被採用以有效激發微帶第二高階漏波模。分別激發具有漏波主模及不具漏波主模之第二高階漏波模之實驗顯示了漏波主模對第二高階漏波模天線設計之影響。
This thesis investigates the properties and applications of the first two higher order leaky modes of the microstrip, which include efficient feeding structures, mutual coupling on microstrips, coupling effect in different leaky modes, and several antenna applications. The spectral domain analysis is employed to solve the propagation characteristics of the microstrip leaky modes throughout this study.
The first part of the thesis pertains to the first higher order leaky mode (odd mode) of the microstrip line. The design procedure of the microstrip first higher order leaky-mode antenna excited by aperture-coupling method is presented. Separating the radiators from other components with the ground planes provides optimal design of both parts respectively so that the inherent broadband, high gain and frequency-scanning properties of the leaky-wave antenna can be exploited. Tilted- and broadside-beam antennas are designed in X-band. Single and dual beams arrays in K-band and a base-station antenna application for S-band are also implemented. The required elements were reduced markedly in comparison with the patch antenna for higher gain design. Versatile designs combining the merits of multilayer technology offer simplicity and efficient design for many wireless applications. In addition, the coupling effects in the coupled microstrips, which caused by the first higher order leaky mode on the microstrip, are investigated. The resonance phenomena found between the strip of the infinite coupled microstrips are owing to the inner edges of the coupled microstrips forming the resonant boundary and the leaky modes of the microstrips serving as the resonant sources. For even- and odd-symmetry of the coupled microstrips, more than one leaky mode are found in both cases, and these leaky modes couple with each other.
The second part of the thesis treats the subjects of the microstrip second higher order leaky mode (even mode). Mode-coupling phenomena of the even modes on microstrip is investigated. These phenomena occur when the dispersion curve of the leaky dominant mode of the microstrip is close to those of the even higher order modes of the microstrip. Interesting patterns of the migration of mode evolution, obtained by varying the ratio of the strip width to the substrate thickness, exhibit the relationships between the even higher order modes and the leaky dominant mode. The spectral gap effect of the even higher order modes is the result of the coupling between these modes and the leaky dominant mode. Design of the even higher order leaky mode as a line source should be based on the physical implications of these phenomena. Short-end CPW and microstrip feeding method are used to excite the second higher order leaky mode. Experimentally exciting the second higher order leaky mode with and without the leaky dominant mode reveals the interference between these two leaky modes.
封面
Abstract
Acknowledgement
Contents
List of Figures
Chapter 1 Introduction
1.1 Motivation of this thesis
1.2 Organization of this thesis
Chapter 2 Aperture-Coupling Feeding Structure for the Microstrip First Higher Order Leaky Mode
2.1 Spectral domain analysis for the microstrip leaky mode
2.2 Propagation characteristics of the microstrip first higher order leaky modes on different substrates
2.3 Design of the coupling aperture for the microstrip first higher order leaky mode
2.4 An aperture-coupled microstrip leaky-wave antenna with a broadside mainbeam
Chapter 3 Mutual Coupling of the Microstrip First Higher Order Leaky Mode in Microstrip Coupled Lines
3.1 Mutual coupling between the microstrip lines
3.2 Resonance phenomena between two infinite first higher order leaky-mode microstrips-odd-symmetric mode
3.3 Resonance phenomena between two infinite first higher order leaky-mode microstrips-even-symmetric mode
Chapter 4 Array Applications of the Aperture-Coupled First Higher Order Leaky-Mode Microstrip
4.1 Single-beam array
4.2 Dual-beam array
4.3 Stripline-fed aperture-coupled back-to-back leaky-mode microstrips
Chapter 5 Mode-Coupling Phenomena in Even Microstrip Leaky Modes
5.1 The migration of the mode evolution caused by varying the microstrip width
5.2 Variation of the substrate thickness
5.3 A discussion on no physical leaky dominant mode region
5.4 Two cases that attenuation constants approach zero
Chapter 6 Microstrip Second Higher Order Leaky-Mode antenna
6.1 Short-end-CPW-fed microstrip second higher order leaky-wave antenna
6.2 Microstrip-fed microstrip second higher order leaky-wave antenna
Chapter 7 Conclusion and Suggestions for Further Studies
References
Appendix Green''s Functions for Microstrip
Personal information
Publication List
[1] J. L. Langston, "Multipoint a millimeter wave system for quick access to the information super-highway," IEEE MTT-S Digest, June 1996, pp.1897-1900.
[2] D. A. Gray, "A broadband wireless access system at 28 GHz," Wireless Communication Conference, 1997, pp. 1-7.
[3] B. Zimmermann, W. Wiesbeck, and J. Kehrbeck, ? GHz microwave close-range sensors for industrial measurement applications," Microwave Journal, May 1996, pp. 228-238.
[4] R. Lesser, Sr., "Collision avoidance keys on wireless technology to make highways intelligent," RF Design, Oct. 1998, pp. 72-76.
[5] S. Yacoubi, "An electronic toll and traffic management system," Microwave Journal, July 1994, pp. 64-72.
[6] W. Menzel, "A new traveling-wave antenna in microstrip," Archie fur Electronik und Ubertranungstechnik, vol.33, Apr. 1979, pp.137-140.
[7] A. A. Oliner and K. S. Lee, The nature of the leakage from higher-order modes on microstrip line, 1986 IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, 1986, pp. 57-60.
[8] Y. -D. Lin, J.-W. Sheen, and C.-K. C. Tzuang, "Analysis and design of feeding structures for microstrip leaky wave antenna," IEEE Trans. Microwave Theory Tech., vol.44, pp.1540-1547, Sep. 1996.
[9] G. -J. Chou and C.-K. C. Tzuang, "Oscillator-type active-integrated antenna: the leaky-mode approach," IEEE Trans. Microwave Theory Tech., vol.44, pp.2265-2272, Dec. 1996.
[10] C. Luxey and J.-M. Laheurte, "Simple design of dual-beam leaky-wave antennas in microstrips," IEE Proc.-Microw. Antennas Propag., vol.144, no. 6, Dec. 1997
[11] T.-L. Chen and Y.-D. Lin, "Aperture-coupled microstrip line leaky wave antenna with broadside mainbeam," Electronics Letters, vol. 34, no.14, pp.1366-1367, Jul. 1998.
[12] T.-L. Chen and Y.-D. Lin, "A K-band Aperture-Coupled Microstrip Leaky-Wave Antenna, " Asia-Pacific Microwave Conf. Proc., 1998, pp. 1491-1494.
[13] H. Shigesawa, M. Tsuji, and A. A. Oliner, "A new mode-coupling effect of coplanar waveguides of finite width," IEEE International Microwave Symposium Digest, May 1990, pp.1063-1066.
[14] M. Tsuji, H. Shigesawa, and A. A. Oliner, "New surface-wave-like mode on CPWs of infinite width and its role in explaining the leakage cancellation effect," IEEE MTT-S International Microwave Symposium Digest, June 1992, pp. 495-498, Albuquerque, NM.
[15] D. Nghiem, J. T. Williams, D. R. Jackson, and A. A. Oliner, "Existence of a the leaky dominant mode on microstrip line with an isotropic substrate: theory and measurement," IEEE Trans. Microwave Theory Tech., vol. MTT-44, pp. 1710-1715, Dec. 1996.
[16] M. Tsuji, H. Shigesawa, and A. A. Oliner, "Simultaneous propagation of both bound and the leaky dominant modes on conductor-backed coplanar strips," 1993 IEEE MTT-S International Microwave Symposium Digest, pp. 1295-1298, Atlanta, GA, 1993.
[17] Y.-D. Lin and Y.-B. Tsai, "Surface wave leakage phenomena in coupled slot lines, " IEEE Microwave and Guided Wave Letter, vol. 4, pp. 338-340, Oct. 1994.
[18] A. A. Oliner, "Leakage from higher modes on microstrip line with application to antenna," Radio Science, vol. 22, no. 6, pp. 907-912, Nov. 1987.
[19] J. S. Bagby, C. H. Lee, D. P. Nyquist, and Y. Yuan, "Identification of propagation regimes on integrated microstrip transmission lines," IEEE Trans. Microwave Theory Tech., vol. MTT-41, pp. 1887-1894, Nov. 1993.
[20] Z. Ma and E. Yamashita, "Space wave leakage from higher order modes on various planar transmission line structure," 1994 IEEE MTT-S International Microwave Symposium Digest, pp. 1033-1036, 1995.
[21] Y.-D. Lin and J.-W. Sheen, "Mode distinction and radiation efficiency analysis of planar leaky-wave line source," IEEE Trans. Microwave Theory Tech. vol. MTT-45, pp. 1672-1680, Oct.1997.
[22] P. Lampariello, F. Frezza, and A. A. Oliner, "The transition region between bound-wave and leaky-wave ranges for a partially dielectric-loaded open guiding structure," IEEE Trans. Microwave Theory Tech. vol. MTT-38, pp. 1831-1836, Dec.1990.
[23] D. M. Pozar, "Microstrip antenna aperture-coupled to a microstripline," Electronics Letters, vol. 21, no.2, pp.49-50, Jan. 1985.
[24] T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, John Wiley, 1989.
[25] R. Marques and F. Mesa, "Spectral domain analysis of higher order leaky modes in microstrip lines: a new spectral-gap effect," Journal of Electromagnetic Waves and Applications, vol. 11, 1367-1384, 1997.
[26] R. E. Collin and F. J. Zucker, Antenna Theory, McGraw-Hill, 1969.
[27] A. A. Oliner and K. S. Lee, "The nature of the leakage from higher modes on microstrip line," IEEE MTT-S. Digest, 1986, pp. 57-60.
[28] K. A. Michalski, and D. Zheng, "Rigorous analysis of open microstrip lines of arbitrary cross section in bound and leaky regimes." IEEE Trans. Microwave Theory Tech., vol.37, pp.2005-2010, Dec. 1989.
[29] J. S. Bagby, C. H. Lee, D. P. Nyquist, and Y. Yuan, "Identification of propagation regimes on integrated microstrip transmission lines," IEEE Trans. Microwave Theory Tech., vol. 41, pp.1887-1894, Nov. 1993.
[30] P. L. Sullivan and D. H. Schaubert, "Analysis of an aperture coupled microstrip antenna." IEEE Trans. Antennas and Propagation, vol.34, pp.977-984, Aug. 1986.
[31] D. M. Pozar, "A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas." IEEE Trans. Antennas and Propagation, vol.34, pp.1446-1439, Dec. 1986.
[32] M. Himdi, J.P. Daniel, and C. Terret, "Transmission line analysis of aperture-coupled microstrip antenna." Electronics Letters, vol. 25, no.18, pp.1229-1230, Aug. 1989.
[33] N. K. Das, "Power leakage, characteristic impedance, and leakage-transition behavior of finite-length stub sections of leaky printed transmission lines," IEEE Trans. Microwave Theory Tech., vol.44, Apr. 1996, pp.526-536.
[34] A. K. Bhattacharyya, "Long rectangular patch antenna with a single feed," IEEE Trans. Antenna and Prop., vol.38, July 1990, pp. 987-993.
[35] D. A. Hill, K. H. Cavecy, and R. T. Johnk, "Crosstalk between microstrip transmission lines," IEEE Trans. Electromagnetic Compatibility, vol.36, pp.314-321, Nov. 1994.
[36] J. S. Bagby, C. -H. Lee, Y.Yuan, and D. P. Nyquist,, "Entire-domain basis MOM analysis of coupled microstrip transmission lines," IEEE Trans. Microwave Theory Tech. vol. MTT-40, pp. 49-57, Jan.1992.
[37] J. L. Cina and L. Carin, "Mode conversion and leaky-wave excitation at open-end coupled-microstrip discontinuities," IEEE Trans. Microwave Theory Tech. vol. MTT-43, no.9, pp. 2066-2072, Sept. 1995.
[38] C. -K. C. Tzuang and S. -P. Liu, "Leaky dominant modes and microwave circuit coupling in layered symmetric coupled lines," 1995 IEEE MTT-S International Microwave Symposium Digest, pp. 153-156, 1995.
[39] M. Ghomi and H. Baudrand, "Full-wave analysis of coupled microstrip leaky-wave antennas," 1991 IEEE Antennas and Propagation Society International Symposium Digest, pp.322-325, 1991.
[40] C. -K. C. Tzuang and C. -H. Hu, "The Mutual coupling effects in large microstrip leaky-mode array," 1998 IEEE MTT-S International Microwave Symposium Digest, pp. 1791-1794, 1998.
[41] J. Huang, "A parallel-series-fed microstrip array with high efficiency and low cross-polarization," Microwave and Optical Tech. Lett. vol.5, no.5, pp.230-233, May 1992.
[42] J. Huang and S. N. Madsen, "A dual-beam microstrip array antenna," 1992 IEEE Antennas and Propagation Society International Symposium Digest, pp.147-150, Chicago, Illinois, USA, July.
[43] T Hori, S Kiya, K Cho and K Kagoshima, "Pattern synthesis of rod antennas for microcell base station," 10th International Conference on Antennas and Propagation, 14-17 April 1997, no.436, pp. 1.436-1.439.
[44] R. Marques, F. Mesa, and N. K. Das, "Comments on the "Criterion of Leakage from Printed Circuit Transmission Line"," IEEE Trans. Microwave Theory Tech. vol. MTT-43, pp. 242-243, Jan.1995.
[45] R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation. Cambride: The M.I.T. Press, 1969.
[46] C.-K. C. Tzuang and C.-C. Lin, "Millimeter wave micro-CPW integrated antenna," SPIE, 1996, pp.513-518, Denver, Colorado, Aug. 1996.
[47] H. K. Smith and P. E. Mayers, "Log-periodic array of dual-feed microstrip patch antennas," IEEE Trans. Antennas Propagat., vol. 39, pp.1659-1664, Dec. 1991.
[48] S. Maci, L. Borselli, and L. Rossi, "Diffraction at the edge of a truncated grounded dielectric slab," IEEE Trans. Antennas Propagat., vol. 44, pp.863-873, June 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top