跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許靜儀
研究生(外文):Ching-Yi Hsu
論文名稱:農林廢料、酚和甲醛共縮合樹脂木材膠合劑之研究
論文名稱(外文):Study on the Copolymer Resins Made of Agricultural and Forest Residue Extracts<Phenol and Formaldehyde for wood Adhesives
指導教授:陳嘉明陳嘉明引用關係郭蘭生郭蘭生引用關係
指導教授(外文):Chia-Ming ChenLan-Sheng Kuo
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:50
中文關鍵詞:農林廢棄物木質纖維素複合體相思樹樹皮相思樹葉叢蔗渣稻殼共縮合樹脂膠合劑
外文關鍵詞:agricultural residuelignocellulosic complexTaiwan acacia barkTaiwan acacia foliagesugarcane bagasserice hullcopolymer resinsadhesive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的乃嘗試進一步以台灣最常見且具代表性的樹種相思樹(Acacia confusa Merr . Taiwan acacia )樹皮(bark)和葉叢(foliage)及產量豐富的農林廢棄物稻殼(Oryza sativa Linn . rice hull)、蔗渣(Saccharum officinarum Linn . sugarcane bagasse)於不同處理條件下進行降解,並探究這些農林廢棄物的降解物與樹脂交聯劑,如甲醛的反應性,藉尋求各農林廢棄物最適的降解處理條件形成降解物,並期望使用這些降解物代替部份的酚,以形成農林廢棄物降解物、酚和甲醛共縮合樹脂(extracts-phenol-formaldehyde coploymers),供為具有耐水性與耐久性的木材膠合劑。
依據美國製漿造紙工業協會(Technical Association of Pulp and Paper Industry)標準規定(TAPPI standards)測定各試材之化學組成分。四種試料之灰份以稻殼15.44 % 為最高,蔗渣4.03 % 為最低。全纖維素含量稻殼69.74 %、蔗渣66.27 % 皆比相思樹樹皮42.24 %、葉叢47.15 % 含量多。相思樹中,樹皮含有較多的木質素43.12 % 與灰份4.83 %,葉叢則含較多的全纖維素47.15 %。葉叢醇苯萃取物15.42 %、熱水萃取物22.03 % 和1 % 氫氧化鈉萃取物59.43 % 皆較樹皮醇苯萃取物6.95 %、熱水萃取物20.73 %、1 % 氫氧化鈉萃取物49.77 % 多。稻殼與蔗渣之醇苯萃取物2.25 %、2.38 %、熱水萃取物5.01 %、2.23 % 和1 % 氫氧化鈉萃取物40.15 %、47.65 % 皆明顯比相思樹之樹皮及葉叢少。
降解物於60 ℃ 和80 ℃ 下與甲醛反應3 小時,以鹽酸羥胺法定量反應液中游離甲醛之含量,藉以評估降解物與甲醛的反應性。相思樹樹皮、稻殼及蔗渣與甲醛反應性最佳的降解條件為藥劑15 % 氫氧化鈉、降解溫度95 ℃、時間6 小時;相思樹葉叢則為15 % 氫氧化鈉、降解溫度135 ℃、處理時間3.5 小時。
使用所合成之共縮合樹脂膠合劑以膠合平均厚度約2 mm之柳杉單板,使其成為三層合板,單面佈膠量為206.98 g/m2,在溫度150 ℃、壓力12 kg/cm2之下熱壓3 分鐘。根據美國合板協會(APA)工業規格PS1-95之真空加壓注入法(vacuum/pressure) 測定膠合層的耐水性與耐久性。不同的試驗材料應用於農林廢料- 酚和甲醛共縮合樹脂之膠合劑時,其最適當降解方法並不盡相同。鹼性降解條件下,除蔗渣與稻殼於堆積時間30分鐘之合板外,各試材堆積時間30 分鐘與60 分鐘都可達APA PS1-95工業規格之要求。2 % 硫酸在175 ℃ 之酸性降解下,除蔗渣於堆積時間60 分鐘外,其餘的試材皆可達美國合板協會 (APA) 工業規格PS1-95所要求的標準,但堆積時間30 分鐘之製板條件膠合性並不理想。經酸預處理後於鹼性下降解之條件中僅相思樹樹皮的降解物在堆積時間60 分鐘和稻殼的降解物在堆積時間30 分鐘與60 分鐘之膠合性可達PS1-95所要求之標準,其餘膠合性均不理想,其原因都是膠合層的過渡滲透。
Acacia confusa barks and foliage, sugarcane bagasse and rice hull were extracted with NaOH and/or H2SO4 to obtain degraded products for using as partial replacement of the phenol to synthesize extracts-phenol-formaldehyde copolymers as durable water-resistance wood adhesives. The analysis of the chemical compositions of the raw materials as specified in the Tappi standards indicated that rice hull contains 15.44 % and sugarcane bagasse 4.03 % of ash. The holocellulose content of rice hull is 69.74 %, sugarcane bagasse 66.27 %, the barks of Taiwan acacia 42.24 % and the foliages of Taiwan acacia 47.15 %. The most characteristic feature of acacia barks is its high content of lignin ( 43.12 % ) and ash ( 4.83 % ). Furthermore, acacia foliages has higher contents of holocellulose (47.15 %);alcohol-benzene extractive (15.42 % ); hot water extractive ( 22.03 % );and 1 % NaOH extractive ( 59.43 % ) compared with 6.95 %;20.73 %;and 49.77 % of its barks. Rice hull and sugarcane bagasse contain alcohol-benzene extractives 2.25 % and 2.38 %;hot water extractives 5.01 % and 2.23 %;and 1 % NaOH extractives 40.15 % and 47.65 %, respectively, which were apparently less than barks and foliages of Taiwan acacia.
Extracts were reacted with formaldehyde at 60 ℃ and 80 ℃ for 3 hours, and then the free formaldehyde in the reaction mixture was determined by using the hydroxylamine hydrochloride method to account for the quantity of formaldehyde consumed and their reaction rate. From the above, it becomes apparent that the optimum treating conditions for reaction with formaldehyde were treatment of 15 % NaOH at 95 ℃ for 6 hours for acacia barks, rice hull and sugarcane bagasse and 15 % NaOH at 135 ℃ for 3.5 hours for acacia foliage.
All 3-ply 6mm thick plywoods were hot pressed at 150 ℃ under 12 kg/cm2 pressure for 3 minutes. The spread rate was 206.98 g/m2 single glueline. The water-resistance and durability of each plywood specimen were evaluated in accordance with the APA industrial standard PSI-95, vacuum/pressure method. It has been noticed that the optimum extraction method to obtain extracts for the preparation of extract-phenol-formaldehyde copolymer from various agricultural residues is not quite the same. By alkaline extraction, except the plywood made from the extracts of sugarcane bagasse and rice hull with 30 minutes assembly-time, the others with 30 and 60 minutes assembly-time can meet the requirements of APA PSI-95 industrial standard with more than 85 % of wood failures. By 2 % acid extraction, except the plywoods bonding with copolymer containing extract of sugarcane bagasse with 60 minutes assembly time, the others could meet the requirements of APA PSI-95 industrial standard, nevertheless the glueline quality of the 30 minutes assembly time was fair. Using pre-acidic treatment and then followed by alkaline extraction, it was found that plywoods containing acacia bark extract with 60 minutes assembly time and rice hull extract with 30 or 60 minutes assembly time could meet the requirements of APA industrial standard, others could not.
目 錄
目錄 -------------------------------------------------------------------I
圖目錄 --------------------------------------------------------------III
表目錄 ---------------------------------------------------------------V
中文摘要 ----------------------------------------------------------VII
英文摘要 -----------------------------------------------------------IX
第一章 前言 ----------------------------------------------------------1
第二章 文獻回顧 ----------------------------------------------------4
2-1農林廢棄物用於製造共縮合樹脂之評估----------------4
2-2農林廢料的降解活性化 -------------------------------------5
2-3農林廢料反應性之評估 -------------------------------------6
2-4農林廢料膠合性之評估 -------------------------------------8
第三章 農林廢棄物的化學組成分分析與其降解處理 -------10
3-1 試驗材料與方法 --------------------------------------------10
3-1-1 農林廢棄物 --------------------------------------------10
3-1-2 化學藥品 -----------------------------------------------10
3-2化學組成分定量 ---------------------------------------------11
3-3農林廢棄物的降解處理條件 -------------------------------11
3-3-1降解物含鹼量、含酸量之測定------------------------12
3-4結果與討論 ---------------------------------------------------13
第四章 降解物與甲醛之反應性---------------------------------16
4-1試驗材料 ------------------------------------------------------16
4-1-1 農林廢棄物 --------------------------------------------16
4-1-2 化學藥品 -----------------------------------------------16
4-2 降解物與甲醛之反應性 -----------------------------------16
4-3 結果與討論 --------------------------------------------------17
第五章 農林廢棄物降解產物-酚和甲醛共縮合樹脂用於合板膠合性之評估 --------------------------------------------38
5-1試驗材料與方法 ---------------------------------------------38
5-1-1試驗材料 ------------------------------------------------38
5-1-2化學藥品 ------------------------------------------------38
5-2農林廢料降解物-酚和甲醛共縮合樹脂之合成 ---------39
5-2-1合成樹脂之性質測定 ---------------------------------39
5-2-2膠合劑之配方 ------------------------------------------40
5-2-3單板製備 ------------------------------------------------40
5-2-4合板之製備與測試 ------------------------------------41
5-3結果與討論 ---------------------------------------------------41
第六章 結論 -------------------------------------------------------45
第七章 參考文獻 -------------------------------------------------47
圖目錄 (List of Figures)
圖4.1相思樹樹皮降解物與甲醛在60 ℃下,不同反應時間甲醛含量曲線圖------------------------------------------23
圖4.2相思樹樹叢降解物與甲醛在60 ℃下,不同反應時間甲醛含量曲線圖------------------------------------------23
圖4.3蔗渣降解物與甲醛在60 ℃下,不同反應時間甲醛含量曲線-----------------------------------------------------24
圖4.4稻殼與甲醛在60 ℃下,不同反應時間甲醛含量曲線圖---------------------------------------------------------24
圖4.5經溫度135 ℃、3.5 小時之農林廢料降解物與甲醛之反應性-------------------------------------------------------25
圖4.6經溫度95 ℃、6 小時之農林廢料降解物與甲醛之反應性-----------------------------------------------------------26
圖4.7於溫度135 ℃、添加5 % 氫氧化鈉後降解3.5與6 小時之降解物與甲醛之反應性------------------------------27
圖4.8以15 % 氫氧化鈉經不同溫度和時間降解之降解物與甲醛之反應性------------------------------------------------28
圖4.9以10 % 氫氧化鈉經不同溫度和時間降解之降解物與甲醛之反應性------------------------------------------------29
圖4.10經不同藥劑處理之降解物與甲醛反應性之比較------30
圖4.11相思樹樹皮於不同降解條件下與甲醛之反應性------31
圖4.12相思樹葉叢於不同降解條件下與甲醛之反應性------31
圖4.13蔗渣於不同降解條件下與甲醛之反應性--------------34
圖4.14稻殼於不同降解條件下與甲醛之反應性--------------34
圖4-15 經酸預處理再於鹼性下降解之降解物與甲醛反應性之比較----------------------------------------------------37
表目錄 (List of Tables)
表3.1各試料之化學組成分含量--------------------------------14
表3.2不同試料以2 % 硫酸於溫度175 ℃、時間3.5 小時降解處理之降解物游離酸含量----------------------------14
表3.3不同處理條件降解物之固形份與游離鹼含量之比較--15
表4.1相思樹樹皮降解物與甲醛反應之游離甲醛含量-------18
表4.2相思樹葉叢降解物與甲醛反應之游離甲醛含量-------19
表4.3蔗渣降解物與甲醛反應之游離甲醛含量---------------20
表4.4稻殼降解物與甲醛反應之游離甲醛含量---------------21
表4.5相思樹樹皮降解物與甲醛反應後之甲醛吸收量-------32
表4.6相思樹葉叢降解物與甲醛反應後之甲醛吸收量------33
表4.7蔗渣降解物與甲醛反應後之甲醛吸收量---------------35
表4.8稻殼降解物與甲醛反應後之甲醛吸收量--------------36
表5.1膠合劑混合配方---------------------------------------------40
表5.2共縮合樹脂之基本性質------------------------------------42
表5.3降解物-酚和甲醛共縮合樹脂膠合之合板木破率------44
1. 李文昭,1996,應用農林殘料研製單寧共聚合木材膠合劑之基礎研究,興大森林所博士論文. PP: 42-44
2. 陳嘉明,1996,木材膠合劑合成、化學、工藝,國立編譯館.PP.213-331
3. 陳嘉明,1999,生物質木材膠合劑,國立編譯館. (著者原稿,尚無頁碼,印刷中)
4. 劉正字,1978,稻殼做為木材膠合劑填料之利用研究.科技發展月刊 6(12):1184-1196.
5. Campbell, A. G. and A. R. Walsh 1985. The present status and potential of kraft lignin-phenol-formaldehyde wood adhesives. J. Adhesion, 18: 301-314.
6. Chen, C. M. 1980a Phenol-aldehyde resin composition containing pecan pith extract and an aldehyde. U.S. Patent, No.4, 201, 699. May 6.
7. Chen, C. M. 1980b Phenol-aldehyde resin composition containing peanut hull extract and an aldehyde. U.S. Patent, No.4, 201, 700. May 6.
8. Chen, C. M. 1980c Organic phenol extract compositions of peanut hull agricultural residues and method. U.S. Patent, No.4, 201,723. April 29.
9. Chen, C. M. 1980d Organic phenol extract compositions of pecan pith agricultural residues and method. U.S. Patent, No.4, 201,851. May 6.
10. Chen, C. M. 1981 Gluability of copolymer resins having higher replacement of phenol by agricultural residue extracts. Ind. Eng. Chem. Prod. Res. Dev., 20(4) : 704 - 708.
11. Chen, C. M. 1981. Tree foliage extracts and their use in phenol-formaldehyde resins. U.S. Patent, No. 4,469,858, Sept. 4.
12. Chen, C. M.1982a Copolymer resin of bark and agricultural residue extracts with phenol and formaldehyde: 20 percent weight of phenol replacement. For.Prod.J., 32(2):35-40.
13. Chen, C. M.1982b Copolymer resin of bark and agricultural residue extracts with phenol and formaldehyde: 40 percent weight of phenol replacement. For.Prod.J.,32(11/12):14-18.
14. Chen, C. M.1982c Bonding particleboareds with the fast curing phenolic-agricultural residue extract copolymer resins. Holzforschung, 36(3):109-116.
15. Chen, C. M.1982d Effects of extraction on the quantity of formaldehyde requirement in reaction of extractive of bark and agricultural residues with formaldehyde. Holzforschung, 36(2):65-70.
16. Chen, C. M. 1982e Effects of formaldehyde concentration on the bond quality of peanut hull extract copolymer resins. Ind. Eng. Chem. Prod. Res. Dev., 21(3):450-454.
17. Chen, C. M., I. Abe, and J. K. Pan 1986. Determination of relative reactivity between bark extracts and formaldehyde. Proceedings of Conference on Wood Adhesive in 1985: Status and Needs, Forestry Products Research Society, Madison,WI. pp.189-196 .
18. Chen, C. M. 1989 Effects of the alkaline contents of bark extracts on the cannizzaro reaction in mixtures of the extracts and formaldehyde. Holzforschung, 43(4):283-286.
19. Chen, C. M. 1991a Effects of extraction on yield and characteristics of bark extracts. Holzforschung, 45(2):155-159.
20. Chen, C. M. 1991b Effects of extraction on the reaction of bark extracts with formaldehyde. Holzforschung, 44:7-11.
21. Chen, C. M. 1991c Gluability of copolymer resins made of tree foliage extract, phenol, and formaldehyde for southern pine plywood. Holzforschung, 45(4): 303-306.
22. Chen, C. M. 1991d Gluability of forest and agricultural residue extracts copolymer resins with high moisture content southern pine plywood. Proceedings of Adhesives and Bonded Wood Products Symposium, Nov.19-21, 1991, Seattle, Washington., pp.377-383.
23. Chen, C. M. 1997 Adhesive from alkali treated biomass. In Adhesive Technology for Tropical Woods, C. Y. Hse, Edit.,PP.104-125.
24. Chornet, E, R. P. Overend 1985 Biomass Liquefaction: An overview .In Fundamentals of Thermochemical Biomass Conversion, R. P. Overend, T. A. Milne , L. K. Mudge , Edit., Chapt. 54:967-1002. Elsevier Applied Science Publishers , London.
25. Gratzl, J. S. 1981 Potential of technical lignins as extenders in phenolic resins: an assessment of reactive sites. In Phenolic Resins, Chemistry and Application. Proceeding of Weyerhaeuser Science Symposium. June 6-8, 1979, Tacoma, WA.
26. Wise, L. E. M. Murphy, and A. A. D Addieco, 1946 Paper Trade J., 122 (2): 35.
27. Marton, J., T. Marton, and I. Falkehag 1966 Alkali-catalyzed reactions of formaldehyde with lignins. In Lignin Structure and Reactions. Advance in Chemistry Series 59, pp.125-144, American Chemical Society, Washington, DC.
28. Pizzi,A. 1983 Tannin-based wood adhesives.In Wood Adhesive Chemistry and Technology, Marcel Dekker Inc. New York pp.177-246.
29. Sarkanen, K. V., B. Ericsson, and J.Suzuki 1966 Reactivity of lignin in electrophilic displacement reactions. In Lignin Structure and Reaction. Advance in Chemistry Series 59, pp. 38-50, American Chemical Society, Washington, DC.
30. Troughton, G. E. and J. F. Manville 1971 A study of lignin model compounds in phenol-formaldehyde glue reactions. Bi-Monthly Res. Note, 27(3): 23-24, The Minister, Department of Fisheries and Forestry, Ottawa, Canada.
31. Young, R. A., and J.L.Davids 1985 Thermochemical fractionation and liquefaction of wood. In Fundamentals of Thermochemical Biomass Conversion, R. P. Overend, T.A.Milne, L.K.Mudge, Edit., Chapt. 7:121-155. Elsevier Applied Science Publishers, London.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top